Theoretical and Experimental Study of a Glycan-Coated Biosensor for Staphylococcus aureus Detection

Document Type : Research Paper

Authors

1 Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran

2 Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran

3 Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran

4 Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran

Abstract

Methicillin‑resistant Staphylococcus aureus is one of the community-associated pathogens with a high capacity for attachment to human tissues and biofilm formation. Therefore, the design of tools for rapid identification of this bacterium in environments and providing timely safety alerts is essential for public health. The aim of the present study was to identify a suitable coating that can be immobilized on an electrical sensor and effectively capture Staphylococcus cells on the sensor surface. The glycan Asialoganglioside GM2 (GA2) was selected as a candidate for this purpose, and molecular docking simulations were used to investigate and validate its potential to bind Staphylococcus receptors. The results showed that the interaction of GA2 with S. aureus receptors exhibited high binding affinity and relatively low RMSD values, indicating a stable and reliable binding interaction. This strong binding of GA2 with ClfB receptor suggests potential applications for GA2 in inhibiting bacterial adhesion and in developing diagnostic or therapeutic strategies targeting S. aureus. Also, this simulation finding was confirmed experimentally. A GA2 coating was applied to the sensor, increasing the probability of bacterial attachment to the sensor surface by more than eightfold. Also, the coating’s specificity to S. aureus detection was examined with E. coli (experimentally and theoretically). These findings may provide a basis for designing targeted therapeutics and diagnostics against this important pathogen.

Keywords

Main Subjects


Berry, K., Verhoef, M., Leonard, A., & Cox, G. (2022). Staphylococcus aureus adhesion to the host. Ann. N. Y. Acad. Sci., 1515(1), 75–96. https://doi.org/10.1111/nyas.14807
Brooks, B. R., BROOKS III, C. L., MACKERELL,A. D., NILSSON, L., PETRELLA, R. J., ROUX, B., WON, Y., ARCHONTIS, G., BARTELS, C., BORESCH, S., CAFLISCH, A., CAVES, L., CUI, Q., DINNER, A. R., FEIG, M., FISCHER, S., GAO, J., HODOSCEK, M., IM, W., KUCZERA, K., LAZARIDIS, T., MA, J., OVCHINNIKOV, V., PACI, E., PASTOR, R. W., POST, C. B., PU, J. Z., SCHAEFER, M., TIDOR, B., VENABLE, R. M., WOODCOCK, H. L., WU, X., YANG, W., YORK, D. M., KARPLUS6, M. (2009). CHARMM: The biomolecular simulation program. J. Comput. Chem., 30(10), 1545–1614. https://doi.org/10.1002/jcc.21287
Crosby, H. A., Kwiecinski, J., & Horswill, A. (2017). Staphylococcus Aureus aggregation and coagulation mechanisms, and their function in host-pathogen interactions. Adv. Appl. Microbiol., 96, 1–40. https://doi.org/10.1016/bs.aambs.2016.07.018
Croxen, M., Law, R., Scholz, R., Keeney, K., Wlodarska, M., Finlay, B. (2013). Recent advances in understanding enteric pathogenic Escherichia Coli. Clin. Microbiol. Rev., 26(4), 822–80. https://doi.org/10.1128/CMR.00022-13
Eswar, N., Webb, B., Marti-Renom, M., Madhusudhan, M. S., Eramian, D., Shen, M., Pieper, U., Sali, A. (2006). Comparative protein structure modeling using modeller. Curr. Protoc. Bioinform., 15(1), 5.6.1-5.6.30.  https://doi.org/10.1002/0471250953.bi0506s15
Forli, S., Huey, R., Pique, M., Sanner, M., Goodsell, D., Olson, A. (2016). Computational protein-ligand docking and virtual drug screening. Nat. Protoc., 11(5), 905–19. https://doi.org/10.1038/nprot.2016.051
Foster, T., Geoghegan, J., Ganesh, V., & Höök, M. (2014). Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus Aureus. Nat. Rev. Microbiol., 12(1), 49–62. https://doi.org/10.1038/nrmicro3161
Ganesh, V., Rivera, J., Smeds, E., Ko, Y., Bowden, M., Wann, E., Gurusiddappa, S., Fitzgerald, J., Hook, M. (2008). A structural model of the Staphylococcus Aureus ClfA – fibrinogen interaction opens new avenues for the design of anti-Staphylococcal therapeutics. PLoS Pathog., 4(11), e1000226. https://doi.org/10.1371/journal.ppat.1000226
Ganesh, V., Barbu, E., Deivanayagam, C., Le, B., Anderson, A., Matsuka, Y., Lin, S., Foster, T., Narayana, S., Hook, M. (2011). Structural and biochemical characterization of Staphylococcus Aureus Clumping Factor B/ligand interactions. J. Biol. Chem., 286(29), 25963–72. https://doi.org/10.1074/jbc.M110.217414
Ghali, H., Chibli, H., Nadeau, J., Bianucci, P., Peter, Y. (2016). Real-time detection of Staphylococcus Aureus using whispering gallery mode optical microdisks. Biosensors, 6(2), 20. https://doi.org/10.3390/bios6020020
Leach, A., Shoichet, B., & Peishoff, C. (2006). Prediction of protein-ligand interactions. Docking and scoring: successes and gaps. J. Med. Chem., 49(20), 5851–55. https://doi.org/10.1021/jm060999m
Li, Y., Poole, S., Rasulova, F., McVeigh, A., Savarino, S., Xia, D. (2007). A receptor-binding site as revealed by the crystal structure of CfaE, the colonization Factor Antigen I Fimbrial adhesin of enterotoxigenic Escherichia Coli. J. Biol. Chem., 282(33), 23970–80. https://doi.org/10.1074/jbc.M700921200
Martínez-Alonso, M., González-Montalbán, N., García-Fruitós, E., & Villaverde, A. (2008). The functional quality of soluble recombinant polypeptides produced in Escherichia Coli is defined by a wide conformational spectrum. Appl. Environ. Microbiol., 74(23), 7431–33. https://doi.org/10.1128/AEM.01446-08
Nataro, J., & Kaper, J. (1998). Diarrheagenic Escherichia Coli. Clin. Microbiol. Rev., 11(1), 142–201. https://doi.org/10.1128/cmr.11.1.14
Otto, M. (2013). Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu. Rev. Med., 64, 175–88. https://doi.org/10.1146/annurev-med-042711-140023
Reddinger, R., Luke-Marshall, N., Hakansson, A., & Campagnari, A. (2016). Host physiologic changes induced by influenza a virus lead to Staphylococcus Aureus biofilm dispersion and transition from asymptomatic colonization to invasive disease. mBio, 7(4), e01235-16. https://doi.org/10.1128/mBio.01235-16
Schwermann, N., & Volker, W. (2023). Functional diversity of Staphylococcal Surface proteins at the host-microbe interface. Front. Microbiol., 14, 1196957. https://doi.org/10.3389/fmicb.2023.1196957
Tong, S., Davis, J., Eichenberger, E., Holland, T., Fowler, V., Jr. (2015). Staphylococcus Aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev., 28(3), 603–61.  https://doi.org/10.1128/CMR.00134-14
Varki, A. (2007). Glycan-based interactions involving vertebrate Sialic-Acid-Recognizing proteins. Nature, 446(7139), 1023–29. https://doi.org/10.1038/nature05816
Wertheim, H., Walsh, E., Choudhurry, R., Melles, D., Boelens, H., Miajlovic, H., Verbrugh, H., Foster, T., Belkum, A. (2008). Key role for Clumping Factor B in Staphylococcus Aureus nasal colonization of humans. PLoS Med., 5(1), e104. https://doi.org/10.1371/journal.pmed.0050017
Zelada-Guillén, G., Sebastián-Avila1, J., Blondeau, P., Riu, J., Rius, F. (2012). Label-Free detection of Staphylococcus Aureus in skin using real-time potentiometric biosensors based on carbon nanotubes and aptamers. Biosens. Bioelectron., 31(1), 226–32. https://doi.org/10.1016/j.bios.2011.10.021
Zhang, Y., Tan, P., Zhao, Y., & Ma, X. (2022). Enterotoxigenic Escherichia Coli: intestinal pathogenesis mechanisms and colonization resistance by gut microbiota. Gut Microbes, 14(1), 2055943. https://doi.org/10.1080/19490976.2022.2055943