Efficient in vivo Directed Evolution in E. coli using a Gibson Assembly-Adapted EvolvR System

Document Type : Research Paper

Authors

Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

Abstract

Genetic diversity is vital for species adaptation and evolution, enhancing resilience to environmental changes and improving desirable traits. Directed evolution simulates natural selection in labs to engineer proteins and microorganisms, utilizing iterative cycles of genetic variation to achieve desirable characteristics. EvolvR is a system that can continuously diversify all nucleotides during an adjustable window at user-defined locations. It is achieved by mutagenesis using engineered DNA polymerases directed to the target site via CRISPR-directed nickases. Although the typical plasmid assembly and gRNA insertion method is Golden Gate cloning, the aim of this study was to set up EvolvR according to our equipment and conditions. The gRNA targeting rpsE in E. coli DH5α was selected from a previous study. Specific primers that included the gRNA sequence and provided homology on one side were inserted into the EvolvR plasmid using the Gibson assembly method. The constructed plasmid was chemically transformed into E. coli DH5α. Bacterial resistance was evaluated by colony counting on culture media containing 50, 100, and 500 µl/ml of spectinomycin. Results showed that the number of E. coli DH5α cells in an antibiotic-free medium was 11×108 CFU.mL-1, while no growth was observed at any antibiotic concentration. The non-induced EvolvR cells did not grow in a medium containing 100 and 500 μg.mL-1 spectinomycin, but grew at 20×106 CFU.mL-1 in a medium with 50 μg.mL-1 antibiotic. Induction of the EvolvR system resulted in a dramatic increase in spectinomycin-resistant mutants, yielding up to 4×108 CFU.mL-1 on 100 μg⋅mL−1 spectinomycin and a resistance frequency order of magnitude higher than previously reported. Our findings validate Gibson assembly as a robust and accessible alternative to Golden Gate for constructing EvolvR systems and emphasize the high efficacy achievable with a strategically targeted single gRNA.

Keywords

Main Subjects


Adams, M. B. (2024). The Evolution of “Darwinism”: Up Close and Personal. In Unity and Disunity in Evolutionary Biology: Deconstructing Darwinism (pp. 83-121). Springer. https://doi.org/10.1007/978-3-031-42629-2_5
Avilan, L. (2023). Assembling multiple fragments: the Gibson Assembly. In DNA Manipulation and Analysis (pp. 45-53). Springer. https://doi.org/10.1007/978-1-0716-3004-4_4
Benocci, T., de Vries, R. P., & Daly, P. (2018). A senescence-delaying pre-culture medium for transcriptomics of Podospora anserina. Journal of microbiological methods, 146, 33-36. https://doi.org/10.1016/j.mimet.2018.01.010
Bertram, R., Neumann, B., & Schuster, C. F. (2022). Status quo of tet regulation in bacteria. Microbial Biotechnology, 15(4), 1101-1119. https://doi.org/10.1111/1751-7915.13926
Chavhan, R. L., Hinge, V. R., Wankhade, D. J., Deshmukh, A. S., Mahajan, N., & Kadam, U. S. (2024). Bioinformatics for Molecular Breeding and Enhanced Crop Performance: Applications and Perspectives. Bioinformatics for Plant Research and Crop Breeding, 21-74. http://dx.doi.org/10.1002/9781394209965.ch2
Currin, A., Parker, S., Robinson, C. J., Takano, E., Scrutton, N. S., & Breitling, R. (2021). The evolving art of creating genetic diversity: From directed evolution to synthetic biology. Biotechnology Advances, 50, 107762. https://doi.org/10.1016/j.biotechadv.2021.107762
De Munter, S., Van Parys, A., Bral, L., Ingels, J., Goetgeluk, G., Bonte, S., Pille, M., Billiet, L., Weening, K., & Verhee, A. (2020). Rapid and effective generation of nanobody based CARs using PCR and gibson assembly. International journal of molecular sciences, 21(3), 883. https://doi.org/10.3390/ijms21030883
Fatima, G., Magomedova, A., & Parvez, S. (2024). Biotechnology and sustainable development. Shineeks Publishers.
Feng, S., Liang, L., Shen, C., Lin, D., Li, J., Lyu, L., Liang, W., Zhong, L.-l., Cook, G. M., & Doi, Y. (2022). A CRISPR-guided mutagenic DNA polymerase strategy for the detection of antibiotic-resistant mutations in M. tuberculosis. Molecular Therapy-Nucleic Acids, 29, 354-367. https://doi.org/10.1016/j.omtn.2022.07.004
García-García, J. D., Joshi, J., Patterson, J. A., Trujillo-Rodriguez, L., Reisch, C. R., Javanpour, A. A., Liu, C. C., & Hanson, A. D. (2020). Potential for applying continuous directed evolution to plant enzymes: an exploratory study. Life, 10(9), 179. https://pubmed.ncbi.nlm.nih.gov/32899502/
Halperin, S. O., Tou, C. J., Wong, E. B., Modavi, C., Schaffer, D. V., & Dueber, J. E. (2018). CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature, 560(7717), 248-252. https://doi.org/10.1038/s41586-018-0384-8
Iqbal, Z., & Sadaf, S. (2022). A patent-based consideration of latest platforms in the art of directed evolution: A decade long untold story. Biotechnology and Genetic Engineering Reviews, 38(2), 133-246. https://doi.org/10.1080/02648725.2021.2017638
KhokharVoytas, A., Shahbaz, M., Maqsood, M. F., Zulfiqar, U., Naz, N., Iqbal, U. Z., Sara, M., Aqeel, M., Khalid, N., & Noman, A. (2023). Genetic modification strategies for enhancing plant resilience to abiotic stresses in the context of climate change. Functional & integrative genomics, 23(3), 283. https://doi.org/10.1007/s10142-023-01202-0
Kumar, A., & Singh, S. (2013). Directed evolution: tailoring biocatalysts for industrial applications. Critical reviews in biotechnology, 33(4), 365-378. https://doi.org/10.3109/07388551.2012.716810
Long, M., Xu, M., Qiao, Z., Ma, Z., Osire, T., Yang, T., Zhang, X., Shao, M., & Rao, Z. (2020). Directed evolution of ornithine cyclodeaminase using an EvolvR-based growth-coupling strategy for efficient biosynthesis of L-proline. ACS Synthetic Biology, 9(7), 1855-1863. https://doi.org/10.1021/acssynbio.0c00198
Lutz, R., & Bujard, H. (1997). Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic acids research, 25(6), 1203-1210. https://doi.org/10.1093/nar/25.6.1203
Mavrommati, M., Daskalaki, A., Papanikolaou, S., & Aggelis, G. (2022). Adaptive laboratory evolution principles and applications in industrial biotechnology. Biotechnology Advances, 54, 107795. https://doi.org/10.1016/j.biotechadv.2021.107795
Rao, G. S., Jiang, W., & Mahfouz, M. (2021). Synthetic directed evolution in plants: unlocking trait engineering and improvement. Synthetic Biology, 6(1), ysab025. https://doi.org/10.1093/synbio/ysab025
Sadanand, S. (2018). EvolvR-ing to targeted mutagenesis. Nature Biotechnology, 36(9), 819-819. https://doi.org/10.1038/nbt.4247
Saini, P., Saini, P., Kaur, J. J., Francies, R. M., Gani, M., Rajendra, A. A., Negi, N., Jagtap, A., Kadam, A., & Singh, C. (2020). Molecular approaches for harvesting natural diversity for crop improvement. Rediscovery of genetic and genomic resources for future food security, 67-169. http://dx.doi.org/10.1007/978-981-15-0156-2_3
Singer, S. D., Laurie, J. D., Bilichak, A., Kumar, S., & Singh, J. (2021). Genetic variation and unintended risk in the context of old and new breeding techniques. Critical Reviews in Plant Sciences, 40(1), 68-108. https://doi.org/10.1080/07352689.2021.1883826
Tou, C. J., Schaffer, D. V., & Dueber, J. E. (2020). Targeted diversification in the S. cerevisiae genome with CRISPR-guided DNA polymerase I. ACS Synthetic Biology, 9(7), 1911-1916. https://doi.org/10.1021/acssynbio.0c00149
Valiyev, A. (2021). Modified Gibson assembly application on the construction of the recombinant plasmid . https://www.vdu.lt/cris/bitstreams/27b8d346-badb-455c-a277-3a9f6715ab89/download
Vatanparast, Y., Ebrahimipour, G., & Yaghoubi-Avini, M. (2024). Enhancement of Xylose Utilization in Various Escherichia coli Strains Through Adaptive Laboratory Evolution (ALE) Experiments. Plant, Algae, and Environment, 8(2), 1441-1454. https://doi.org/10.48308/jpr.2024.236981.1088
Vidal, L. S., Isalan, M., Heap, J. T., & Ledesma-Amaro, R. (2023). A primer to directed evolution: current methodologies and future directions. RSC Chemical Biology, 4(4), 271-291. https://doi.org/10.1039/D2CB00231K
Wang, Y., Wang, X., Yu, L., Tian, Y., Li, S., Leng, F., Ma, J., & Chen, J. (2020). Effects of Sr2+ on the preparation of Escherchia coli DH5α competent cells and plasmid transformation. PeerJ, 8, e9480. https://doi.org/10.7717/peerj.9480
Wang, Y., Xue, P., Cao, M., Yu, T., Lane, S. T., & Zhao, H. (2021). Directed evolution: methodologies and applications. Chemical reviews, 121(20), 12384-12444. https://doi.org/10.1021/acs.chemrev.1c00260
Wang, Y., Yu, L., Shao, J., Zhu, Z., & Zhang, L. (2023). Structure-driven protein engineering for production of valuable natural products. Trends in Plant Science, 28(4), 460-470. https://doi.org/10.1016/j.tplants.2022.11.004