Benocci, T., de Vries, R. P., & Daly, P. (2018). A senescence-delaying pre-culture medium for transcriptomics of Podospora anserina.
Journal of microbiological methods,
146, 33-36.
https://doi.org/10.1016/j.mimet.2018.01.010
Chavhan, R. L., Hinge, V. R., Wankhade, D. J., Deshmukh, A. S., Mahajan, N., & Kadam, U. S. (2024). Bioinformatics for Molecular Breeding and Enhanced Crop Performance: Applications and Perspectives.
Bioinformatics for Plant Research and Crop Breeding, 21-74.
http://dx.doi.org/10.1002/9781394209965.ch2
Currin, A., Parker, S., Robinson, C. J., Takano, E., Scrutton, N. S., & Breitling, R. (2021). The evolving art of creating genetic diversity: From directed evolution to synthetic biology.
Biotechnology Advances,
50, 107762.
https://doi.org/10.1016/j.biotechadv.2021.107762
De Munter, S., Van Parys, A., Bral, L., Ingels, J., Goetgeluk, G., Bonte, S., Pille, M., Billiet, L., Weening, K., & Verhee, A. (2020). Rapid and effective generation of nanobody based CARs using PCR and gibson assembly.
International journal of molecular sciences,
21(3), 883.
https://doi.org/10.3390/ijms21030883
Fatima, G., Magomedova, A., & Parvez, S. (2024). Biotechnology and sustainable development. Shineeks Publishers.
Feng, S., Liang, L., Shen, C., Lin, D., Li, J., Lyu, L., Liang, W., Zhong, L.-l., Cook, G. M., & Doi, Y. (2022). A CRISPR-guided mutagenic DNA polymerase strategy for the detection of antibiotic-resistant mutations in M. tuberculosis.
Molecular Therapy-Nucleic Acids,
29, 354-367.
https://doi.org/10.1016/j.omtn.2022.07.004
García-García, J. D., Joshi, J., Patterson, J. A., Trujillo-Rodriguez, L., Reisch, C. R., Javanpour, A. A., Liu, C. C., & Hanson, A. D. (2020). Potential for applying continuous directed evolution to plant enzymes: an exploratory study.
Life,
10(9), 179.
https://pubmed.ncbi.nlm.nih.gov/32899502/
Halperin, S. O., Tou, C. J., Wong, E. B., Modavi, C., Schaffer, D. V., & Dueber, J. E. (2018). CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window.
Nature,
560(7717), 248-252.
https://doi.org/10.1038/s41586-018-0384-8
Iqbal, Z., & Sadaf, S. (2022). A patent-based consideration of latest platforms in the art of directed evolution: A decade long untold story.
Biotechnology and Genetic Engineering Reviews,
38(2), 133-246.
https://doi.org/10.1080/02648725.2021.2017638
KhokharVoytas, A., Shahbaz, M., Maqsood, M. F., Zulfiqar, U., Naz, N., Iqbal, U. Z., Sara, M., Aqeel, M., Khalid, N., & Noman, A. (2023). Genetic modification strategies for enhancing plant resilience to abiotic stresses in the context of climate change.
Functional & integrative genomics,
23(3), 283.
https://doi.org/10.1007/s10142-023-01202-0
Long, M., Xu, M., Qiao, Z., Ma, Z., Osire, T., Yang, T., Zhang, X., Shao, M., & Rao, Z. (2020). Directed evolution of ornithine cyclodeaminase using an EvolvR-based growth-coupling strategy for efficient biosynthesis of L-proline.
ACS Synthetic Biology,
9(7), 1855-1863.
https://doi.org/10.1021/acssynbio.0c00198
Lutz, R., & Bujard, H. (1997). Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements.
Nucleic acids research,
25(6), 1203-1210.
https://doi.org/10.1093/nar/25.6.1203
Mavrommati, M., Daskalaki, A., Papanikolaou, S., & Aggelis, G. (2022). Adaptive laboratory evolution principles and applications in industrial biotechnology.
Biotechnology Advances,
54, 107795.
https://doi.org/10.1016/j.biotechadv.2021.107795
Rao, G. S., Jiang, W., & Mahfouz, M. (2021). Synthetic directed evolution in plants: unlocking trait engineering and improvement.
Synthetic Biology,
6(1), ysab025.
https://doi.org/10.1093/synbio/ysab025
Saini, P., Saini, P., Kaur, J. J., Francies, R. M., Gani, M., Rajendra, A. A., Negi, N., Jagtap, A., Kadam, A., & Singh, C. (2020). Molecular approaches for harvesting natural diversity for crop improvement.
Rediscovery of genetic and genomic resources for future food security, 67-169.
http://dx.doi.org/10.1007/978-981-15-0156-2_3
Singer, S. D., Laurie, J. D., Bilichak, A., Kumar, S., & Singh, J. (2021). Genetic variation and unintended risk in the context of old and new breeding techniques.
Critical Reviews in Plant Sciences,
40(1), 68-108.
https://doi.org/10.1080/07352689.2021.1883826
Tou, C. J., Schaffer, D. V., & Dueber, J. E. (2020). Targeted diversification in the S. cerevisiae genome with CRISPR-guided DNA polymerase I.
ACS Synthetic Biology,
9(7), 1911-1916.
https://doi.org/10.1021/acssynbio.0c00149
Vatanparast, Y., Ebrahimipour, G., & Yaghoubi-Avini, M. (2024). Enhancement of Xylose Utilization in Various Escherichia coli Strains Through Adaptive Laboratory Evolution (ALE) Experiments.
Plant, Algae, and Environment,
8(2), 1441-1454.
https://doi.org/10.48308/jpr.2024.236981.1088
Vidal, L. S., Isalan, M., Heap, J. T., & Ledesma-Amaro, R. (2023). A primer to directed evolution: current methodologies and future directions.
RSC Chemical Biology,
4(4), 271-291.
https://doi.org/10.1039/D2CB00231K
Wang, Y., Wang, X., Yu, L., Tian, Y., Li, S., Leng, F., Ma, J., & Chen, J. (2020). Effects of Sr2+ on the preparation of Escherchia coli DH5α competent cells and plasmid transformation.
PeerJ,
8, e9480.
https://doi.org/10.7717/peerj.9480
Wang, Y., Xue, P., Cao, M., Yu, T., Lane, S. T., & Zhao, H. (2021). Directed evolution: methodologies and applications.
Chemical reviews,
121(20), 12384-12444.
https://doi.org/10.1021/acs.chemrev.1c00260
Wang, Y., Yu, L., Shao, J., Zhu, Z., & Zhang, L. (2023). Structure-driven protein engineering for production of valuable natural products.
Trends in Plant Science,
28(4), 460-470.
https://doi.org/10.1016/j.tplants.2022.11.004