Abo-State, M. A. M., Shanab, S. M. M., & Ali, H. E. A. (2019). Effect of nutrients and gamma radiation on growth and lipid accumulation of
Chlorella vulgaris for biodiesel production.
Journal of Radiation Research and Applied Sciences, 12(1), 332–342.
https://doi.org/10.1080/16878507.2019.1662216
Al-Qasmi, M., Raut, N., Talebi, S., Al-Rajhi, S., & Al-Barwani, T. (2012). A review of the effect of light on microalgae growth. Proceedings of the World Congress on Engineering. [Incomplete citation: No volume, page range, or DOI]
An, B.-K., Kim, K.-E., Jeon, J.-Y., & Lee, K. W. (2016). Effect of dried
Chlorella vulgaris and
Chlorella growth factor on growth performance, meat qualities and humoral immune responses in broiler chickens.
SpringerPlus, 5(1), 1–7.
https://doi.org/10.1186/s40064-016-2373-4
Andersen, R. A. (Ed.). (2005). Algal culturing techniques. Elsevier.
Baidya, A., Akter, T., Islam, M. R., Shah, A. A., Hossain, M. A., Salam, M. A., & Paul, S. I. (2021). Effect of different wavelengths of LED light on the growth, chlorophyll, β-carotene content and proximate composition of
Chlorella ellipsoidea. Heliyon, 7(12), e08525.
https://doi.org/10.1016/j.heliyon.2021.e08525
Bilcke, G., Van Craenenbroeck, L., Castagna, A., Osuna-Cruz, C. M., Vandepoele, K., Sabbe, K., De Veylder, L., & Vyverman, W. (2021). Light intensity and spectral composition drive reproductive success in the marine benthic diatom
Seminavis robusta. Scientific Reports, 11(1), 17560.
https://doi.org/10.1038/s41598-021-92838-0
Bišová, K., & Zachleder, V. (2014). Cell-cycle regulation in green algae dividing by multiple fission.
Journal of Experimental Botany, 65(10), 2585–2602.
https://doi.org/10.1093/jxb/ert466
Che, C. A., Kim, S. H., Hong, H. J., Kityo, M. K., Sunwoo, I. Y., Jeong, G.-T., & Kim, S.-K. (2019). Optimization of light intensity and photoperiod for
Isochrysis galbana culture to improve biomass and lipid production using 14-L photobioreactors with mixed LED wavelengths under a two-phase culture system.
Bioresource Technology, 285, 121323.
https://doi.org/10.1016/j.biortech.2019.121323
Choi, Y.-K., Kumaran, R. S., Jeon, H. J., Song, H.-J., Yang, Y.-H., Lee, S. H., Song, K. G., Kim, K. J., Singh, V., & Kim, H. J. (2015). LED light stress induced biomass and fatty acid production in microalgal biosystem,
Acutodesmus obliquus. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 145, 245–253.
https://doi.org/10.1016/j.saa.2015.03.035
da Silva Ferreira, V., & Sant’Anna, C. (2017). Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications.
World Journal of Microbiology and Biotechnology, 33(1), 20.
https://doi.org/10.1007/s11274-016-2181-6
Gani, P., Sunar, N. M., Matias-Peralta, H. M., & Apandi, N. (2019). An overview of environmental factor’s effect on the growth of microalgae. Journal of Applied Chemistry and Natural Resources, 1(2). [Incomplete citation: No page range or DOI]
Guo, H., & Fang, Z. (2020). Effect of light quality on the cultivation of Chlorella pyrenoidosa. E3S Web of Conferences.
Hariskos, I., Rubner, T., & Posten, C. (2015). Investigation of cell growth and chlorophyll a content of the coccolithophorid alga
Emiliania huxleyi by using simple bench-top flow cytometry.
Journal of Bioprocessing & Biotechniques, 5(6), 234.
https://doi.org/10.4172/2155-9821.1000234
Hawrot-Paw, M., & Sąsiadek, M. (2023). Optimization of microalgal biomass production in vertical tubular photobioreactors.
Energies, 16(5), 2429.
https://doi.org/10.3390/en16052429
Hotos, G. N., & Avramidou, D. (2021). The effect of various salinities and light intensities on the growth performance of five locally isolated microalgae in laboratory batch cultures.
Journal of Marine Science and Engineering, 9(11), 1275.
https://doi.org/10.3390/jmse9111275
Hu, J., Meng, W., Su, Y., Qian, C., & Fu, W. (2023). Emerging technologies for advancing microalgal photosynthesis and metabolism toward sustainable production.
Frontiers in Marine Science, 10, 1260709.
https://doi.org/10.3389/fmars.2023.1260709
Janjua, M. Y., Azfar, A., Asghar, Z., & Shehzad Quraishi, K. (2024). Modeling and optimization of biomass productivity of
Chlorella vulgaris using response surface methodology, analysis of variance and machine learning for carbon dioxide capture.
Bioresource Technology, 400, 130687.
https://doi.org/10.1016/j.biortech.2024.130687
Katam, K., Ananthula, R., Anumala, S., Sriariyanun, M., & Bhattacharyya, D. (2022). The impact of light intensity and wavelength on the performance of algal-bacterial culture treating domestic wastewater. E3S Web of Conferences.
Katooli, M. H., Aslani, A., Razi Astaraee, F., Mazzuca Sobczuk, T., & Bakhtiar, A. (2021). Multi-criteria analysis of microalgae production in Iran.
Biofuels, 12(7), 789–795.
https://doi.org/10.1080/17597269.2018.1542566
Lee, Y. K., Chen, W., Shen, H., Han, D., Li, Y., Jones, H. D., Timlin, J. A., & Hu, Q. (2013). Basic culturing and analytical measurement techniques. In Y. K. Lee (Ed.), Handbook of microalgal culture: Applied phycology and biotechnology (2nd ed., pp. 37–68). Blackwell Publishing.
Magyar, T., Németh, B., Tamás, J., & Nagy, P. T. (2024). Improvement of N and P ratio for enhanced biomass productivity and sustainable cultivation of
Chlorella vulgaris microalgae.
Heliyon, 10(1), e23238.
https://doi.org/10.1016/j.heliyon.2023.e23238
Maltsev, Y., Maltseva, K., Kulikovskiy, M., & Maltseva, S. (2021). Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition.
Biology, 10(10), 1060.
https://doi.org/10.3390/biology10101060
Mehra, A., & Jutur, P. P. (2022). Application of response surface methodology (RSM) for optimizing biomass production in
Nannochloropsis oculata UTEX 2164.
Journal of Applied Phycology, 34(4), 1893–1907.
https://doi.org/10.1007/s10811-022-02758-3
Mohsenpour, S. F., Richards, B., & Willoughby, N. (2012). Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production.
Bioresource Technology, 125, 75–81.
https://doi.org/10.1016/j.biortech.2012.08.072
Muthukrishnan, L. (2022). Bio-engineering of microalgae: Challenges and future prospects toward industrial and environmental applications.
Journal of Basic Microbiology, 62(3–4), 310–329.
https://doi.org/10.1002/jobm.202100417
Pelagatti, M., Mori, G., Falsini, S., Ballini, R., Lazzara, L., & Papini, A. (2023). Blue and yellow light induce changes in biochemical composition and ultrastructure of
Limnospira fusiformis (Cyanoprokaryota).
Microorganisms, 11(5), 1236.
https://doi.org/10.3390/microorganisms11051236
Ru, I. T. K., Sung, Y. Y., Jusoh, M., Wahid, M. E. A., & Nagappan, T. (2020).
Chlorella vulgaris: A perspective on its potential for combining high biomass with high value bioproducts.
Applied Phycology, 1(1), 2–11.
https://doi.org/10.1080/26388081.2020.1715256
Sani, S., Warly, L., Zudri, F., Novia, R., & Fadri, R. (2021).
Chlorella vulgaris supplementation as a mineral source of zinc and selenium to improve goat milk quality as a health drink in the COVID-19 pandemic.
IOP Conference Series: Earth and Environmental Science, 868(1), 012028.
https://doi.org/10.1088/1755-1315/868/1/012028
Schulze, P. S., Barreira, L. A., Pereira, H. G., Perales, J. A., & Varela, J. C. (2014). Light emitting diodes (LEDs) applied to microalgal production.
Trends in Biotechnology, 32(8), 422–430.
https://doi.org/10.1016/j.tibtech.2014.06.001
Sharma, R., Singh, G. P., & Sharma, V. (2012). Effects of culture conditions on growth and biochemical profile of
Chlorella vulgaris. Journal of Plant Pathology and Microbiology, 3(5), 131.
https://doi.org/10.4172/2157-7471.1000131
Songserm, R., Nishiyama, Y., & Sanevas, N. (2024). Light influences growth, pigment synthesis, photosynthesis capacity, and antioxidant activities in
Scenedesmus falcatus. Scientifica, 2024, 1898624.
https://doi.org/10.1155/2024/1898624
Stein-Taylor, J. R. (1973). Handbook of phycological methods: Culture methods and growth measurements. Cambridge University Press.
Vazirzadeh, A., & Moghadaszadeh, H. (2018). Optimization of growth, lipid and chlorophyll contents in Chlorella vulgaris under different conditions of nitrate, phosphate and photoperiod by central composite design (CCD). Iranian Scientific Fisheries Journal, 27(3), 85–95.
Verdelho, V. (2019). 30-minute outlook of microalgae biomass in Europe.
Yadavalli, R., Rao, C., Reddy, D. C., Sivasai, K., & Rao, S. R. (2010). Effect of different culture media on cell concentrations of Chlorella pyrenoidosa under photoautotrophic conditions. International Journal of Natural and Engineering Sciences, 4(3), 47–51.
Zhang, L., Liu, J., Shen, X., Li, S., Li, W., & Xiao, X. (2023). Response surfaces method and artificial intelligence approaches for modeling the effects of environmental factors on chlorophyll a in
Isochrysis galbana. Microorganisms, 11(8), 1875.
https://doi.org/10.3390/microorganisms11081875
Zhong, Y., Jin, P., & Cheng, J. J. (2018). A comprehensive comparable study of the physiological properties of four microalgal species under different light wavelength conditions.
Planta, 248(2), 489–498.
https://doi.org/10.1007/s00425-018-2936-x