Combined Effect of Light Intensity, Photoperiod and Phosphorus Levels on Biomass and ‎Chlorophyll Production in Chlorella vulgaris

Document Type : Research Paper

Authors

1 Department of Fisheries, Faculty of Natural Resources, University of Tehran, GPO Box 4111, Karaj, Iran

2 Oceans and Atmosphere, CSIRO, GPO Box 1538 Hobart, TAS 7001, Australia

3 Department of Biotechnology, Iranian Research Organization for Science & Technology (IROST), Tehran, Iran

Abstract

Efficient management of economic and sustainable production of microalgae necessitates the strategic utilization of influential growth factors. A pivotal aspect involves optimizing the utilization of photonic energy in conjunction with environmental parameters through elevating algal efficiency to its maximum potential. This investigation delves into the effect of Light Emitting Diodes (LEDs) on different microalgal species under diverse conditions, specifically exploring the impact of blue light intensity, photoperiod, and phosphorus on biomass and chlorophylls a and b content in Chlorella vulgaris. To achieve this objective, a Response Surface Methodology (RSM) approach was employed. The study revealed that the combination of 40 µmol photons . m-2. s-1, 12:12 photoperiod (light:dark), and 80 mg/L phosphorus in media yielded a biomass production of 40*106 cells/ml and 27.7 mg/L chlorophyll a, respectively. Furthermore, response surface analysis identified the optimal condition at 36.58 µmol photons . m-2 . s-1, a 12:12 photoperiod, and 80 mg/L phosphorus in media, which led to 36.24*106 cells/ml, 27.83 mg/L chlorophyll a, and 5.43 mg/L chlorophyll b, with a remarkable approval rating of 93 percent. These findings indicate the potential of LEDs technology to augment biomass production and enhance the content of bioactive compounds in microalgae, thereby endowing them with significant economic value across diverse industries.

Keywords

Main Subjects


Abo-State, M. A. M., Shanab, S. M. M., & Ali, H. E. A. (2019). Effect of nutrients and gamma radiation on growth and lipid accumulation of Chlorella vulgaris for biodiesel production. Journal of Radiation Research and Applied Sciences, 12(1), 332–342. https://doi.org/10.1080/16878507.2019.1662216
Al-Qasmi, M., Raut, N., Talebi, S., Al-Rajhi, S., & Al-Barwani, T. (2012). A review of the effect of light on microalgae growth. Proceedings of the World Congress on Engineering. [Incomplete citation: No volume, page range, or DOI]
An, B.-K., Kim, K.-E., Jeon, J.-Y., & Lee, K. W. (2016). Effect of dried Chlorella vulgaris and Chlorella growth factor on growth performance, meat qualities and humoral immune responses in broiler chickens. SpringerPlus, 5(1), 1–7. https://doi.org/10.1186/s40064-016-2373-4
Andersen, R. A. (Ed.). (2005). Algal culturing techniques. Elsevier.
Baidya, A., Akter, T., Islam, M. R., Shah, A. A., Hossain, M. A., Salam, M. A., & Paul, S. I. (2021). Effect of different wavelengths of LED light on the growth, chlorophyll, β-carotene content and proximate composition of Chlorella ellipsoidea. Heliyon, 7(12), e08525. https://doi.org/10.1016/j.heliyon.2021.e08525
Bilcke, G., Van Craenenbroeck, L., Castagna, A., Osuna-Cruz, C. M., Vandepoele, K., Sabbe, K., De Veylder, L., & Vyverman, W. (2021). Light intensity and spectral composition drive reproductive success in the marine benthic diatom Seminavis robusta. Scientific Reports, 11(1), 17560. https://doi.org/10.1038/s41598-021-92838-0
Bišová, K., & Zachleder, V. (2014). Cell-cycle regulation in green algae dividing by multiple fission. Journal of Experimental Botany, 65(10), 2585–2602. https://doi.org/10.1093/jxb/ert466
Che, C. A., Kim, S. H., Hong, H. J., Kityo, M. K., Sunwoo, I. Y., Jeong, G.-T., & Kim, S.-K. (2019). Optimization of light intensity and photoperiod for Isochrysis galbana culture to improve biomass and lipid production using 14-L photobioreactors with mixed LED wavelengths under a two-phase culture system. Bioresource Technology, 285, 121323. https://doi.org/10.1016/j.biortech.2019.121323
Chen, M. (2014). Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Annual Review of Biochemistry, 83, 317–340. https://doi.org/10.1146/annurev-biochem-072711-162943
Choi, Y.-K., Kumaran, R. S., Jeon, H. J., Song, H.-J., Yang, Y.-H., Lee, S. H., Song, K. G., Kim, K. J., Singh, V., & Kim, H. J. (2015). LED light stress induced biomass and fatty acid production in microalgal biosystem, Acutodesmus obliquus. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 145, 245–253. https://doi.org/10.1016/j.saa.2015.03.035
da Silva Ferreira, V., & Sant’Anna, C. (2017). Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World Journal of Microbiology and Biotechnology, 33(1), 20. https://doi.org/10.1007/s11274-016-2181-6
Eriksen, N. T. (2008). The technology of microalgal culturing. Biotechnology Letters, 30, 1525–1536. https://doi.org/10.1007/s10529-008-9740-3
Fang, S.-C., Reyes, C. d. l., & Umen, J. G. (2006). Cell size checkpoint control by the retinoblastoma tumor suppressor pathway. PLoS Genetics, 2(10), e167. https://doi.org/10.1371/journal.pgen.0020167
Gani, P., Sunar, N. M., Matias-Peralta, H. M., & Apandi, N. (2019). An overview of environmental factor’s effect on the growth of microalgae. Journal of Applied Chemistry and Natural Resources, 1(2). [Incomplete citation: No page range or DOI]
Guo, H., & Fang, Z. (2020). Effect of light quality on the cultivation of Chlorella pyrenoidosa. E3S Web of Conferences. 
Hariskos, I., Rubner, T., & Posten, C. (2015). Investigation of cell growth and chlorophyll a content of the coccolithophorid alga Emiliania huxleyi by using simple bench-top flow cytometry. Journal of Bioprocessing & Biotechniques, 5(6), 234. https://doi.org/10.4172/2155-9821.1000234
Hawrot-Paw, M., & Sąsiadek, M. (2023). Optimization of microalgal biomass production in vertical tubular photobioreactors. Energies, 16(5), 2429. https://doi.org/10.3390/en16052429
Hotos, G. N., & Avramidou, D. (2021). The effect of various salinities and light intensities on the growth performance of five locally isolated microalgae in laboratory batch cultures. Journal of Marine Science and Engineering, 9(11), 1275. https://doi.org/10.3390/jmse9111275
Hu, J., Meng, W., Su, Y., Qian, C., & Fu, W. (2023). Emerging technologies for advancing microalgal photosynthesis and metabolism toward sustainable production. Frontiers in Marine Science, 10, 1260709. https://doi.org/10.3389/fmars.2023.1260709
Janjua, M. Y., Azfar, A., Asghar, Z., & Shehzad Quraishi, K. (2024). Modeling and optimization of biomass productivity of Chlorella vulgaris using response surface methodology, analysis of variance and machine learning for carbon dioxide capture. Bioresource Technology, 400, 130687. https://doi.org/10.1016/j.biortech.2024.130687
Katam, K., Ananthula, R., Anumala, S., Sriariyanun, M., & Bhattacharyya, D. (2022). The impact of light intensity and wavelength on the performance of algal-bacterial culture treating domestic wastewater. E3S Web of Conferences.
Katooli, M. H., Aslani, A., Razi Astaraee, F., Mazzuca Sobczuk, T., & Bakhtiar, A. (2021). Multi-criteria analysis of microalgae production in Iran. Biofuels, 12(7), 789–795. https://doi.org/10.1080/17597269.2018.1542566
Lee, Y. K., Chen, W., Shen, H., Han, D., Li, Y., Jones, H. D., Timlin, J. A., & Hu, Q. (2013). Basic culturing and analytical measurement techniques. In Y. K. Lee (Ed.), Handbook of microalgal culture: Applied phycology and biotechnology (2nd ed., pp. 37–68). Blackwell Publishing.
Magyar, T., Németh, B., Tamás, J., & Nagy, P. T. (2024). Improvement of N and P ratio for enhanced biomass productivity and sustainable cultivation of Chlorella vulgaris microalgae. Heliyon, 10(1), e23238. https://doi.org/10.1016/j.heliyon.2023.e23238
Maltsev, Y., Maltseva, K., Kulikovskiy, M., & Maltseva, S. (2021). Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition. Biology, 10(10), 1060. https://doi.org/10.3390/biology10101060
Mehra, A., & Jutur, P. P. (2022). Application of response surface methodology (RSM) for optimizing biomass production in Nannochloropsis oculata UTEX 2164. Journal of Applied Phycology, 34(4), 1893–1907. https://doi.org/10.1007/s10811-022-02758-3
Mohsenpour, S. F., Richards, B., & Willoughby, N. (2012). Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production. Bioresource Technology, 125, 75–81. https://doi.org/10.1016/j.biortech.2012.08.072
Muthukrishnan, L. (2022). Bio-engineering of microalgae: Challenges and future prospects toward industrial and environmental applications. Journal of Basic Microbiology, 62(3–4), 310–329. https://doi.org/10.1002/jobm.202100417
Pelagatti, M., Mori, G., Falsini, S., Ballini, R., Lazzara, L., & Papini, A. (2023). Blue and yellow light induce changes in biochemical composition and ultrastructure of Limnospira fusiformis (Cyanoprokaryota). Microorganisms, 11(5), 1236. https://doi.org/10.3390/microorganisms11051236
Ru, I. T. K., Sung, Y. Y., Jusoh, M., Wahid, M. E. A., & Nagappan, T. (2020). Chlorella vulgaris: A perspective on its potential for combining high biomass with high value bioproducts. Applied Phycology, 1(1), 2–11. https://doi.org/10.1080/26388081.2020.1715256
Sani, S., Warly, L., Zudri, F., Novia, R., & Fadri, R. (2021). Chlorella vulgaris supplementation as a mineral source of zinc and selenium to improve goat milk quality as a health drink in the COVID-19 pandemic. IOP Conference Series: Earth and Environmental Science, 868(1), 012028. https://doi.org/10.1088/1755-1315/868/1/012028
Schulze, P. S., Barreira, L. A., Pereira, H. G., Perales, J. A., & Varela, J. C. (2014). Light emitting diodes (LEDs) applied to microalgal production. Trends in Biotechnology, 32(8), 422–430. https://doi.org/10.1016/j.tibtech.2014.06.001
Sharma, R., Singh, G. P., & Sharma, V. (2012). Effects of culture conditions on growth and biochemical profile of Chlorella vulgaris. Journal of Plant Pathology and Microbiology, 3(5), 131. https://doi.org/10.4172/2157-7471.1000131
Songserm, R., Nishiyama, Y., & Sanevas, N. (2024). Light influences growth, pigment synthesis, photosynthesis capacity, and antioxidant activities in Scenedesmus falcatus. Scientifica, 2024, 1898624. https://doi.org/10.1155/2024/1898624
Stein-Taylor, J. R. (1973). Handbook of phycological methods: Culture methods and growth measurements. Cambridge University Press.
Vazirzadeh, A., & Moghadaszadeh, H. (2018). Optimization of growth, lipid and chlorophyll contents in Chlorella vulgaris under different conditions of nitrate, phosphate and photoperiod by central composite design (CCD). Iranian Scientific Fisheries Journal, 27(3), 85–95.
Verdelho, V. (2019). 30-minute outlook of microalgae biomass in Europe.
Yadavalli, R., Rao, C., Reddy, D. C., Sivasai, K., & Rao, S. R. (2010). Effect of different culture media on cell concentrations of Chlorella pyrenoidosa under photoautotrophic conditions. International Journal of Natural and Engineering Sciences, 4(3), 47–51. 
Zachleder, V., Bišová, K., & Vítová, M. (2016). The cell cycle of microalgae. In Z. J. T. E. (Ed.), The physiology of microalgae (pp. 3–46). Springer. https://doi.org/10.1007/978-3-319-24945-2_1
Zhang, L., Liu, J., Shen, X., Li, S., Li, W., & Xiao, X. (2023). Response surfaces method and artificial intelligence approaches for modeling the effects of environmental factors on chlorophyll a in Isochrysis galbana. Microorganisms, 11(8), 1875. https://doi.org/10.3390/microorganisms11081875
Zhong, Y., Jin, P., & Cheng, J. J. (2018). A comprehensive comparable study of the physiological properties of four microalgal species under different light wavelength conditions. Planta, 248(2), 489–498. https://doi.org/10.1007/s00425-018-2936-x