Optimization of L-asparaginase type II produced by Bacillus velezensis SE114

Document Type : Research Paper

Authors

1 Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran

2 Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran

Abstract

Once the acute lymphoblastic leukemia cells that need L-asparagine are exposed to L-ASNase, they die because of the limitations of L-asparagine. The globally rising rate of ALL also requires extraordinary efforts to discover new microorganisms with high L-ASNase production and efficiency. The aim of this study is the high amount of L-ASNase production. After isolation, the L-ASNase production was optimized using the response surface methodology and the central composite design. Then, in-silico studies were predicted for the L-ASNase-producing gene. In this study, Bacillus velezensis was isolated as an L-ASNase producer from slaughterhouse effluent using the M9 medium. The optimization process further illustrated Tween 20, glucose, temperature, and L-asparagine, which were more significant for L-ASNase production. Based on statistical prediction by response surface methodology, more enzyme activity (7.11 U/mL) could be realized at 0.6% Tween 20, 1.7% glucose, 55°C temperature, and 1.8% L-asparagine. The in-silico studies also established that the binding site is located at the N-terminal domain and the active site flexible loop. Additionally, it contained Thr36, Ala47, Tyr50, Glu84, Asp117, Thr116, Met142, Lys189, Thr193, and Thr192 as the conserved and functional residues in L-ASNase. It was concluded that B. velezensis SE114  produced L-ASNase type II in the present study. The statistical optimization results also showed that Tween 20, glucose, temperature, and L-asparagine were significant variables affecting the L-ASNase production. In addition, temperature and L-asparagine had noteworthy interactions.

Keywords

Main Subjects


Abdelrazek, N. A., Elkhatib, W. F., Raafat, M. M., & Aboulwafa, M. M. (2019). Experimental and bioinformatics study for production of L-asparaginase from Bacillus licheniformis: a promising enzyme for medical application. Amb Express9(1), 39. https://doi.org/10.1186/s13568-019-0751-3 39
Aghaiypour, K., Wlodawer, A., & Lubkowski, J. (2001). Do bacterial L-asparaginases utilize a catalytic triad Thr-Tyr-Glu?. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular
Berezin, C., Glaser, F., Rosenberg, J., Paz, I., Pupko, T., Fariselli, P., ... & Ben-Tal, N. (2004). ConSeq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics, 20(8), 13221324. https://doi.org/10.1093/bioinformatics/bth070
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965-977. 
Bienert, S., Waterhouse, A., De Beer, T. A., Tauriello, G., Studer, G., Bordoli, L., & Schwede, T. (2017). The SWISS-MODEL Repository—new features and functionality. Nucleic Acids Research, 45(D1), D313-D319. https://doi.org/10.1093/nar/gkw1132
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1006/abio.1976.9999
Chakravarty, N., Singh, J., & Singh, R. P. (2021). A potential type-II L-asparaginase from marine isolate Bacillus australimaris NJB19: statistical optimization, in silico analysis and structural modeling. International Journal of Biological Macromolecules, 174, 527-539. https://doi.org/10.1016/j.ijbiomac.2021.01.130
Czitrom, V. (1999). One-factor-at-a-time versus designed experiments. The American Statistician, 53(2), 126-131. https://doi.org/10.1080/00031305.1999.10474445
Darvishi, F., Jahanafrooz, Z., & Mokhtarzadeh, A. (2022). Microbial L-asparaginase as a promising enzyme for treatment of various cancers. Applied Microbiology and Biotechnology, 106(17),  5335-5347. https://doi.org/10.1007/s00253-022-12086-8 5335-5347.
Derst, C., Wehner, A., Specht, V., & Röhm, K. H. (1994). States and functions of tyrosine residues in Escherichia coli asparaginase II. European Journal of Biochemistry, 224(2), 533-540. https://doi.org/10.1111/j.1432-1033.1994.00533.x
Elegbeleye, J. A., & Buys, E. M. (2020). Molecular characterization and biofilm formation potential of Bacillus subtilis and Bacillus velezensis in extended shelf-life milk processing line. Journal of Dairy Science, 103(6), 49915002. https://doi.org/10.3168/jds.2019-17919
Elshafei, A. M., & El-Ghonemy, D. H. (2015). Screening and media optimization for enhancing Lasparaginase production, an anticancer agent, from different filamentous fungi in solid state fermentation. British Biotechnology Journal, 9(3), 1-15. https://doi.org/10.9734/bbj/2015/19728
Erva, R. R., Venkateswarulu, T. C., & Pagala, B. (2018). Multi-level statistical optimization of l-asparaginase from Bacillus subtilis VUVD001. 3 Biotech, 8(1), 24. https://doi.org/10.1007/s13205-017-1020-2
Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S. E., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In The proteomics protocols handbook (pp. 571-607). Totowa, NJ: Humana press.
Geourjon, C., & Deleage, G. (1995). SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Bioinformatics, 11(6), 681-684. https://doi.org/10.1093/bioinformatics/11.6.681
Ghaderi, F., & Ghezelbash, G. R. (2017). Isolation and optimization of glutaminase-free L-asparaginase enzyme producing Serratia marcescens isolated from natural sources. Journal of Microbial World, 10(1), 49-58. 
Ghiasian, M., Akhavan, S. A., Amoozegar, M. A., Saadatmand, S., & Shavandi, M. (2017). Bacterial diversity determination using culture-dependent and cultureindependent methods. Global J. Environ. Sci. Manage, 3(2), 153-164. https://doi.org/10.22034/gjesm.2017.03.02.004
Ghosh, A., Chandra, A., Dhar, A., Shukla, P., & Baishya, D. (2021). Multi-efficient thermostable endoxylanase from Bacillus velezensis AG20 and its production of xylooligosaccharides as efficient prebiotics with anticancer activity. Process Biochemistry, 109, 59-71. https://doi.org/10.1016/j.procbio.2021.06.011
Guex, N., Peitsch, M. C., & Schwede, T. (2009). Automated comparative protein structure modeling with SWISS‐MODEL and Swiss‐PdbViewer: A historical perspective. Electrophoresis, 30(S1), S162-S173. https://doi.org/10.1002/elps.200900140
Hozoorbakhsh, F., Ghiasian, M., Ghandehari, F., Emami-Karvani, Z., & Khademi Dehkordi, M. (2023). An immunoinformatic approach employing molecular docking and molecular dynamics simulation for evaluation of l-asparaginase produced by Bacillus velezensis. Journal of Biomolecular Structure and Dynamics41(18), 9057-9071. https://doi.org/10.1080/07391102.2022.2139765
Hu, Q., Wu, Q., Dai, B., Cui, J., Khalid, A., Li, Y., & Wang, Z. (2022). Fermentation optimization and amylase activity of endophytic Bacillus velezensis D1 isolated from corn seeds. Journal of Applied Microbiology, 132(5), 36403649. https://doi.org/10.1111/jam.15503
Huang, T. T., Hwang, J. K., Chen, C. H., Chu, C. S., Lee, C. W., & Chen, C. C. (2015). 2: protein structure prediction server version 3.0. Nucleic acids research43(W1), W338-W342. https://doi.org/10.1093/nar/gkv454
Imada, A., Igarasi, S., Nakahama, K., & Isono, M. (1973). Asparaginase and glutaminase activities of microorganisms. Microbiology, 76(1), 85-99. https://doi.org/10.1099/00221287-76-1-85
Jendele, L., Krivak, R., Skoda, P., Novotny, M., & Hoksza, D. (2019). PrankWeb: a web server for ligand binding site prediction and visualization. Nucleic Acids Research, 47(W1), W345-W349. https://doi.org/10.1093/nar/gkz424
Krivák, R., & Hoksza, D. (2018). P2Rank: machine learning based tool for rapid and accurate prediction of ligand binding sites from protein structure. Journal of Cheminformatics, 10, 1-12. https://doi.org/10.1186/s13321018-0285-8
Liu, Y., Lai, Q., Du, J., & Shao, Z. (2016). Bacillus zhangzhouensis sp. nov. and Bacillus australimaris sp. nov. International Journal of Systematic and Evolutionary Microbiology, 66(3), 1193-1199. https://doi.org/10.1099/ijsem.0.000856
Lovell, S. C., Davis, I. W., Arendall III, W. B., De Bakker, P. I., Word, J. M., Prisant, M. G., ... & Richardson, D. C. (2003). Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins: Structure, Function, and Bioinformatics50(3), 437-450. https://doi.org/10.1002/prot.10286
Lubkowski, J., & Wlodawer, A. (2021). Structural and biochemical properties of L‐asparaginase. The FEBS Journal, 288(14), 4183-4209.  DOI: 10.1111/febs.16042
Madeira, F., Pearce, M., Tivey, A. R., Basutkar, P., Lee, J., Edbali, O., ... & Lopez, R. (2022). Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Research, 50(W1), W276-W279. https://doi.org/10.1093/nar/gkac240
Mangamuri, U., Vijayalakshmi, M., Ganduri, V. S. R. K., Rajulapati, S. B., & Poda, S. (2017). Extracellular Lasparaginase from Streptomyces labedae VSM-6: Isolation, production and optimization of culture conditions using RSM. Pharmacognosy Journal, 9(6). https://doi.org/10.5530/pj.2017.6.146
Mohammadi-Sichani, M. E., Mazaheri Assadi, M., Farazmand, A., Kianirad, M., Ahadi, A. M., & HadianGhahderijani, H. (2019). Ability of Agaricus bisporus, Pleurotus ostreatus and Ganoderma lucidum compost in biodegradation of petroleum hydrocarbon-contaminated soil. International Journal of Environmental Science and Technology, 16, 16 2313-2320. https://doi.org/10.1007/s13762-017-1636-0 Mostafa, Y., Alrumman, S., Alamri, S., Hashem, M., Al-izran, K., Alfaifi, M., ... & Taha, T. (2019). Enhanced production of glutaminase-free L-asparaginase by marine Bacillus velezensis and cytotoxic activity against breast cancer cell lines. Electronic Journal of Biotechnology, 42, 6-15. https://doi.org/10.1016/j.ejbt.2019.10.001
Ortlund, E., Lacount, M. W., Lewinski, K., & Lebioda, L. (2000). Reactions of Pseudomonas 7A glutaminase-asparaginase with diazo analogues of glutamine and asparagine result in unexpected covalent inhibitions and suggests an unusual catalytic triad Thr-Tyr-Glu. Biochemistry39(6), 1199-1204. https://doi.org/10.1021/bi991797d triad Thr-Tyr1199-1204
Palm, G. J., Lubkowski, J., Derst, C., Schleper, S., Röhm, K. H., & Wlodawer, A. (1996). A covalently bound catalytic intermediate in Escherichia coli asparaginase: Crystal structure of a Thr‐89‐Val mutant. FEBS letters390(2), 211-216. https://doi.org/10.1016/00145793(96)00660-6
Parmar, F. A., Patel, J. N., & Upasani, V. N. (2021). Screening of microorganisms for production of therapeutic enzymes. Screening, 3(6), 39. 
Rabbee, M. F., Ali, M. S., Choi, J., Hwang, B. S., Jeong, S. C., & Baek, K. H. (2019). Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes. Molecules, 24(6), 1046. https://doi.org/10.3390/molecules24061046
Rahnamay Roodposhti, F., Asadpour, L., Shahriarinour, M., Rasti, B., & Gharaghani, S. (2023). Optimization of L-asparaginase production using native soil-isolated Bacillus sp. and evaluation of its anticancer activity. Journal of Microbial World, 15(4), 259-270. Doi: 10.30495/jmw.2022.1967544.2035 Schweizer, L., & Mueller, L. (2014). Protein conformational dynamics and signaling in evolution and pathophysiology. In Biased Signaling in Physiology, Pharmacology and Therapeutics (pp. 209-249). Academic Press. https://doi.org/10.1016/B978-0-12-411460-9.000070
St, L., & Wold, S. (1989). Analysis of variance (ANOVA). Chemometrics and intelligent laboratory systems6(4), 259-272. https://doi.org/10.1016/0169-7439(89)80095-4
Tatari, M., Ghazvini, R. F., Etemadi, N., Ahadi, A. M., & Mousavi, A. (2012). Analysis of antioxidant enzymes activity, lipid peroxidation and proline content of Agropyron desertorum under drought stress. Biology and Environment, 3(1), 9-24.
Venil, C. K., Nanthakumar, K., Karthikeyan, K., & Lakshmanaperumalsamy, P. (2009). Production of lasparaginase by Serratia marcescens SB08: optimization by response surface methodology. Iranian Journal of Biotechnology, 7(1), 10-18.
Vieille, C., & Zeikus, G. J. (2001). Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiology and Molecular Biology Reviews, 65(1), 1-43. https://doi.org/10.1128/mmbr.65.1.143.2001
Wang, J. C., & Wu, C. J. (1995). A hidden projection property of Plackett-Burman and related designs. Statistica Sinica, 235-250.
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., ... & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296W303. https://doi.org/10.1093/nar/gky427