[1] Adil, E. (2015). Corrective measures of denaturing gradient gel electrophoresis limitations. J Environ Sci Technol, 8(1), 1-12.
[2] Al-Mailem, D. M., Kansour, M. K., & Radwan, S. S. (2017). Capabilities and limitations of DGGE for the analysis of hydrocarbonoclastic prokaryotic communities directly in environmental samples. MicrobiologyOpen, 6(5), e00495.
[3] Arunrut, N., Kiatpathomchai, W., & Ananchaipattana, (2018). Multiplex PCR assay and lyophilization for detection of Salmonella spp., Staphylococcus aureus and Bacillus cereus in pork products. Food science and biotechnology, 27(3), 867-875.
[4] Ben Zakour, N., Beatson, S., van den Broek, A., Thoday, K., & Fitzgerald, R. (2012). Comparative genomics of the Staphylococcus intermedius group of animal pathogens. Frontiers in cellular and infection microbiology, 2, 44.
[5] Bergeron, M., Dauwalder, 0., Gouy, M., Freydiere, A.-M., Bes, M., Meugnier, H., . Vandenesch, F. (2011). Species identification of staphylococci by amplification and sequencing of the tuf gene compared to the gap gene and by matrix-assisted laser desorption ionization time-of flight mass spectrometry. European journal of clinical microbiology & infectious diseases, 30(3), 343-354.
[6] Herrada, H., Soriano, J., Manes, J., & Pico, Y. (2006). Real-time quantitative PCR of Staphylococcus aureus and application in restaurant meals. Journal of food protection, 69(1 ), 106-111.
[7] Besharati, M., Bahrami, A. R., Mashreghi, M., Matin, M., & Bahrami, M. (2017). Development of a polymerase chain reaction-temporal temperature gradient gel electrophoresis assay for identification of Salmonella enterica Subspecies enterica using a hypothetical non-specific endonucleas S. entericae gene sequence. Jundishapur Journal of Microbiology, 10(4).
[8] Bogestam, K., Vondracek, M., Karlsson, M., Fang, H., & Giske, C. G. (2018). Introduction of a hydrolysis probe PCR assay for high-throughput screening of methicillin resistant Staphylococcus aureus with the ability to include or exclude detection of Staphylococcus argenteus. PloS one, J3(2),e0192782.
[9] Botaro, B. G., Cortinhas, C. S., Maryo, L. V. d., Moreno, J., Silva, L. F. P., Benites, N. R., & Santos, M. V. (2013). Detection and enumeration of Staphylococcus aureus from bovine milk samples by real-time polymerase chain reaction. Journal of dairy science, 96(1 l), 6955- 6964.
[10] Chen, H.-C., & Hwang, W.-Z. (2008). Development of a PCR-denaturing Gradient Gel Electrophoresis Method Targeting the tuf Gene to Differentiate and Identify Staphylococcus Species. Journal of Food & Drug Analysis, 16(4).
[11] Chen, L., Mediavilla, J. R., Oliveira, D. C., Willey, M., de Lencastre, H., & Kreiswirth, B. N. (2009). Multiplex real-time PCR for rapid staphylococcal cassette chromosome mec typing. Journal of clinical microbiology, 47(11), 3692-3706.
[12] Chevallet, M., Luche, S., & Rabilloud, T. (2006). Silver staining of proteins in polyacrylamide gels. Nature protocols, 1(4), 1852-1858.
[13] Chiang, Y.-C., Tsen, H.-Y., Chen, H.-Y., Chang, Y. H., Lin, C.-K., Chen, C.-Y., & Pai, W.-Y. (2012). Multiplex PCR and a chromogenic DNA macroarray for the detection of Listeria monocytogens, Staphylococcus aureus, Streptococcus agalactiae, Enterobacter sakazakii, Escherichia coli 0157: H7, Vibrio parahaemolyticus, Salmonella spp. and Pseudomonas fluorescens in milk and meat samples. Journal of microbiological methods, 88(1), 110-116.
[14] Council, N. R. (2003). Scientific criteria to ensure safe food: National Academies Press.
[15] Dahllof, I., Baillie, H., & Kjelleberg, S. (2000). rpoB-based microbial community analysis avoids limitations inherent in l 6S rRNA gene intraspecies heterogeneity. Appl. Environ. Microbial., 66(8), 3376-3380.
[16] de Paiva-Santos, W., de Sousa, V. S., & Giambiagi deMarval, M. (2018). Occurrence of virulence-associated genes among Staphylococcus saprophyticus isolated from different sources. Microbial pathogenesis, I 19, 9-11.
[17] Ercolini, D. (2004). PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. Journal of microbiological methods, 56(3), 297-314.
[18] Filleron, A., Simon, M., Hantova, S., Jacquot, A., Cambonie, G., Marchandin, H., & Jumas-Bilak, E. (2014). tuf-PCR-temporal temperature gradient gel electrophoresis for molecular detection and identification of staphylococci: Application to breast milk and neonate gut microbiota. Journal of microbiological methods, 98, 67- 75.
[19] Foddai, A. C., & Grant, I. R. (2020). Methods for detection of viable foodborne pathogens: current state-of art and future prospects. Applied Microbiology and Biotechnology, 1-8.
[20] Fricker, M., MesselhiiuBer, U., Busch, U., Scherer, S., & Ehling-Schulz, M. (2007). Diagnostic real-time PCR assays for the detection of emetic Bacillus cereus strains in foods and recent food-borne outbreaks. Appl. Environ. Microbial., 73(6), 1892-1898.
[21] Fusco, V., & Quero, G. M. (2014). Culture-Dependent and Culture-Independent Nucleic-Acid-Based Methods Used in the Microbial Safety Assessment of Milk and Dairy Products. Comprehensive Reviews in Food Science and Food Safety, 13(4), 493-537.
[22] Futagawa-Saito, K., Suzuki, M., Ohsawa, M., Ohshima, S., Sakurai, N., Ba-Thein, W., & Fukuyasu, T. (2004). Identification and prevalence of an enterotoxin-related gene, se-int, in Staphylococcus intermedius isolates from dogs and pigeons. Journal of applied microbiology, 96(6), 1361-1366.
[23] Gandra, E. A., Fernandez, M. A., Silva, J. A., & Silva, W. P. d. (2016). Detection by multiplex PCR of Staphylococcus aureus, S. intermedius and S. hyicus in artificially contaminated milk. Ciencia Rural, 46(8), 1418- 1423.
[24] Garofalo, C., Bancalari, E., Milanovic, V., Cardinali, F., Osimani, A., Sardaro, M. L. S., ... Clementi, F. (2017). Study of the bacterial diversity of foods: PCR DGGE versus LH-PCR. International journal of food microbiology, 242, 24-36.
[25] Gilbert, R., De Louvois, J., Donovan, T., Little, C., Nye, K., Ribeiro, C., ... Bolton, F. (2000). Guidelines for the microbiological quality of some ready-to-eat foods sampled at the point of sale. PHLS Advisory Committee for Food and Dairy Products. Communicable disease and public health, 3(3), 163-167.
[26] Gill, A. (2017). The importance of bacterial culture to food microbiology in the age of genomics. Frontiers in microbiology, 8, 777.
[27] Hagen, R. M., Seegmiiller, I., Navai, J., Kappstein, I., Lehn, N., & Miethke, T. (2005). Development of a real time PCR assay for rapid identification of methicillin resistant Staphylococcus aureus from clinical samples. International journal of medical microbiology, 295(2), 77- 86.
[28] Hennekinne, J.-A., Ostyn, A., Guillier, F., Herbin, S., Prufer, A.-L., & Dragacci, S. (2010). How should staphylococcal food poisoning outbreaks be characterized? Toxins, 2(8), 2106-2116.
[29] Hennekinne, J., & Le Loir, Y. (2014). Staphylococcus: Detection by Cultural and Modern Techniques.Hwang, S. M., Kim, M. S., Park, K. U., Song, J., & Kim, E.-C. (2011). Tuf gene sequence analysis has greater discriminatory power than 16S rRNA sequence analysis in identification of clinical isolates of coagulase-negative staphylococci. Journal of clinical microbiology, 49(12), 4142-4149.
[30] Iversen, S., Johannesen, T. B., Ingham, A. C., Edslev, S. M., Tevell, S., Mansson, E., . Andersen, P. S. (2020). Alteration of bacterial communities in anterior nares and skin sites of patients undergoing arthroplasty surgery: analysis by 16S rRNA and staphylococcal specific tuf gene sequencing. Microorganisms, 8(12), 1977.
[31] Kassem, I. I., Esseili, M., & Sigler, V. (2011). Detection and differentiation of staphylococcal contamination of clinical surfaces using denaturing gradient gel electrophoresis. Journal of Hospital Infection, 78(3), 187-193.
[32] Khosravi, A. D., Roointan, M., Montazeri, E. A., Aslani, S., Hashemzadeh, M., & Soodejani, M. T. (2018). Application of tuf gene sequence analysis for the identification of species of coagulase-negative staphylococci in clinical samples and evaluation of their antimicrobial resistance pattern. Infection and drug resistance, 11, 1275.
[33] Kim, J., Hong, J., Lim, J.-A., Heu, S., & Roh, E. (2018). Improved multiplex PCR primers for rapid identification of coagulase-negative staphylococci. Archives of microbiology, 200(1), 73-83.
[34] Kloos, W. E., & Schleifer, K. H. (1975). Simplified scheme for routine identification of human Staphylococcus species. Journal of clinical Microbiology, 1(1), 82-88.
[35] Kord, M., Ardebili, A., Jamalan, M., Jahanbakhsh, R., Behnampour, N., & Ghaemi, E. A. (2018). Evaluation of Biofilm Formation and Presence of lea Genes in Staphylococcus epidermidis Clinical Isolates. Osong public health and research perspectives, 9(4), 160.
[36] Kumar, T., Murali, H., & Batra, H. (2009). Simultaneous detection of pathogenic B. cereus, S. aureus and L. monocytogenes by multiplex PCR. Indian journal of microbiology, 49(3), 283-289.
[37] Martineau, F., Picard, F. J., Ke, D., Paradis, S., Roy, H., Ouellette, M., & Bergeron, M. G. (2001). Development of a PCR assay for identification of staphylococci at genus and species levels. Journal of clinical microbiology, 39(7), 2541-2547.
[39] Morot-Bizot, S. C., Talon, R., & Leroy, S. (2004). Development of a multiplex PCR for the identification of Staphylococcus genus and four staphylococcal species isolated from food. Journal of Applied Microbiology, 97(5), 1087-1094.
[40] Nakano, S., Kobayashi, T., Funabiki, K., Matsumura, A., Nagao, Y., & Yamada, T. (2004). PCR detection of Bacillus and Staphylococcus in various foods. Journal of food protection, 67(6), 1271-1277.
[41] Pui, C. F., Wong, W. C., Chai, L. C., Lee, H. Y., Noorlis, A., Zainazor, T. C. T., . Nakaguchi, Y. (2011). Multiplex PCR for the concurrent detection and differentiation of Salmonella spp., Salmonella Typhi and Salmonella Typhimurium. Tropical medicine and health, 39(1), 9-15.
[42] Ramesh, A., Padmapriya, B., Chrashekar, A., & Varadaraj, M. (2002). Application of a convenient DNA extraction method and multiplex PCR for the direct detection of Staphylococcus aureus and Yersinia enterocolitica in milk samples. Molecular and Cellular Probes, 16(4), 307-314.
[43] Tmcikova, T., Hruskova, V., Oravcova, K., Pangallo, D., & Kaclikova, E. (2009). Rapid and sensitive detection of Staphylococcus aureus in food using selective enrichment and real-time PCR targeting a new gene marker. Food analytical methods, 2(4), 241.
[44] Wang, Y., & Salazar, J. K. (2016). Culture-independent rapid detection methods for bacterial pathogens and toxins in food matrices. Comprehensive Reviews in Food Science and Food Safety, 15(1), 183-205.
[45] Wei, S., Daliri, E. B. M., Chelliah, R., Park, B. J., Lim, J. S., Baek, M. A., . . . Oh, D. H. (2019). Development of a multiplex real-time PCR for simultaneous detection of Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus in food samples. Journal of food safety, 39(1), e12558.
[46] Wilson, I., Cooper, J. E., & Gilmour, A. (1991). Detection of enterotoxigenic Staphylococcus aureus in dried skimmed milk: use of the polymerase chain reaction for amplification and detection of staphylococcal enterotoxin genes entB and entCl and the thermonuclease gene nuc. Appl. Environ. Microbiol., 57(6), 1793-1798.