Development of a PCR-TTGE assay for rapid detection of Staphylococcus species in processed meat products

Document Type : Research Paper

Authors

1 Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran

2 Industrial Biotechnology Research Group, institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran

3 Department of Advanced Technologies, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran

Abstract

Some Staphylococcus species are believed to be the main cause of bacterial infections and foodborne outbreaks. Several reports have discussed the enterotoxigenic properties of some Staphylococcus species, but due to the shortage of efficient diagnostic techniques, most studies have focused only on Staphylococcus aureus. Thus, developing a culture-independent, selective, and rapid detection method for Staphylococcus species in food products is of great importance. In this study, PCR-amplified tuf gene sequences were assessed by temporal temperature gradient gel electrophoresis (TTGE) in order to detect and differentiate between different Staphylococcus species in Iranian food samples. The PCR sensitivity and specificity were evaluated against DNA samples extracted from six Staphylococcus species, including S. aureus, S. epidermidis, S. saprophyticus, S. intermedius, S. chromogenes, and S. hominis, using a commercially available kit and a cost-effective, rapid, non-commercial boiling method. Using the boiling method, the sensitivity of the tuf PCR was 9 × 101 CFU/mL for the salami samples spiked with S. aureus, ten times less sensitive than the commercial kit. After optimizing the TTGE conditions, a species-specific TTGE pattern was obtained based on the differences between the amplified sequences from various species. This TTGE pattern was applied to detect Staphylococcus species in food samples from the market. The presence of Staphylococcus species was confirmed in 6 out of 10 tested salami products. The results demonstrate that the PCR-TTGE method is an alternative method that may be specific and sensitive enough to assess the presence of possible Staphylococcus contamination in meat processed food samples. More studies using different food samples should be considered for an in-depth analysis of bacterial contamination.

Keywords

Main Subjects


[1] Adil, E. (2015). Corrective measures of denaturing gradient gel electrophoresis limitations. J Environ Sci Technol, 8(1), 1-12.
[2] Al-Mailem, D. M., Kansour, M. K., & Radwan, S. S. (2017). Capabilities and limitations of DGGE for the analysis of hydrocarbonoclastic prokaryotic communities directly in environmental samples. MicrobiologyOpen, 6(5), e00495.
[3] Arunrut, N., Kiatpathomchai, W., & Ananchaipattana, (2018). Multiplex PCR assay and lyophilization for detection of Salmonella spp., Staphylococcus aureus and Bacillus cereus in pork products. Food science and biotechnology, 27(3), 867-875.
[4] Ben Zakour, N., Beatson, S., van den Broek, A., Thoday, K., & Fitzgerald, R. (2012). Comparative genomics of the Staphylococcus intermedius group of animal pathogens. Frontiers in cellular and infection microbiology, 2, 44.
[5] Bergeron, M., Dauwalder, 0., Gouy, M., Freydiere, A.-M., Bes, M., Meugnier, H., . Vandenesch, F. (2011). Species identification of staphylococci by amplification and sequencing of the tuf gene compared to the gap gene and by matrix-assisted laser desorption ionization time-of­ flight mass spectrometry. European journal of clinical microbiology & infectious diseases, 30(3), 343-354.
[6] Herrada, H., Soriano, J., Manes, J., & Pico, Y. (2006). Real-time quantitative PCR of Staphylococcus aureus and application in restaurant meals. Journal of food protection, 69(1 ), 106-111.
[7] Besharati, M., Bahrami, A. R., Mashreghi, M., Matin, M., & Bahrami, M. (2017). Development of a polymerase chain reaction-temporal temperature gradient gel electrophoresis assay for identification of Salmonella enterica Subspecies enterica using a hypothetical non-specific endonucleas S.  entericae gene sequence. Jundishapur Journal of Microbiology, 10(4).
[8] Bogestam, K., Vondracek, M., Karlsson, M., Fang, H., & Giske, C. G. (2018). Introduction of a hydrolysis probe PCR assay for high-throughput screening of methicillin­ resistant Staphylococcus aureus with the ability to include or exclude detection of Staphylococcus argenteus. PloS one, J3(2),e0192782. 
[9] Botaro, B. G., Cortinhas, C. S., Maryo, L. V. d., Moreno, J., Silva, L. F. P., Benites, N. R., & Santos, M. V. (2013). Detection and enumeration of Staphylococcus aureus from bovine milk samples by real-time polymerase chain reaction. Journal of dairy science, 96(1 l), 6955- 6964.
[10] Chen, H.-C., & Hwang, W.-Z. (2008). Development of a PCR-denaturing Gradient Gel Electrophoresis Method Targeting the tuf Gene to Differentiate and Identify Staphylococcus Species. Journal of Food & Drug Analysis, 16(4).
[11] Chen, L., Mediavilla, J. R., Oliveira, D. C., Willey, M., de Lencastre, H., & Kreiswirth, B. N. (2009). Multiplex real-time PCR for rapid staphylococcal cassette chromosome mec typing. Journal of clinical microbiology, 47(11), 3692-3706.
[12] Chevallet, M., Luche, S., & Rabilloud, T. (2006). Silver staining of proteins in polyacrylamide gels. Nature protocols, 1(4), 1852-1858.
[13] Chiang, Y.-C., Tsen, H.-Y., Chen, H.-Y., Chang, Y.­ H., Lin, C.-K., Chen, C.-Y., & Pai, W.-Y. (2012). Multiplex PCR and a chromogenic DNA macroarray for the detection of Listeria monocytogens, Staphylococcus aureus, Streptococcus agalactiae, Enterobacter sakazakii, Escherichia coli 0157: H7, Vibrio parahaemolyticus, Salmonella spp. and Pseudomonas fluorescens in milk and meat samples. Journal of microbiological methods, 88(1), 110-116.
[14] Council, N. R. (2003). Scientific criteria to ensure safe food: National Academies Press.
[15] Dahllof, I., Baillie, H., & Kjelleberg, S. (2000). rpoB-based microbial community analysis avoids limitations inherent in l 6S rRNA gene intraspecies heterogeneity. Appl. Environ. Microbial., 66(8), 3376-3380.
[16] de Paiva-Santos, W., de Sousa, V. S., & Giambiagi­ deMarval, M. (2018). Occurrence of virulence-associated genes among Staphylococcus saprophyticus isolated from different sources. Microbial pathogenesis, I 19, 9-11.
[17] Ercolini, D. (2004). PCR-DGGE fingerprinting: novel strategies for detection of microbes in food. Journal of microbiological methods, 56(3), 297-314.
[18] Filleron, A., Simon, M., Hantova, S., Jacquot, A., Cambonie, G., Marchandin, H., & Jumas-Bilak, E. (2014). tuf-PCR-temporal temperature gradient gel electrophoresis for molecular detection and identification of staphylococci: Application to breast milk and neonate gut microbiota. Journal of microbiological methods, 98, 67- 75.
[19] Foddai, A. C., & Grant, I. R. (2020). Methods for detection of viable foodborne pathogens: current state-of­ art and future prospects. Applied Microbiology and Biotechnology, 1-8.
[20] Fricker, M., MesselhiiuBer, U., Busch, U., Scherer, S., & Ehling-Schulz, M. (2007). Diagnostic real-time PCR assays for the detection of emetic Bacillus cereus strains in foods and recent food-borne outbreaks. Appl. Environ. Microbial., 73(6), 1892-1898.
[21] Fusco, V., & Quero, G.  M.  (2014). Culture-Dependent and Culture-Independent Nucleic-Acid-Based Methods Used in the Microbial Safety Assessment of Milk and Dairy Products. Comprehensive Reviews in Food Science and Food Safety, 13(4), 493-537.
[22] Futagawa-Saito, K., Suzuki, M., Ohsawa, M., Ohshima, S., Sakurai, N., Ba-Thein, W., & Fukuyasu, T. (2004). Identification and prevalence of an enterotoxin-related gene, se-int, in Staphylococcus intermedius isolates from dogs and pigeons. Journal of applied microbiology, 96(6), 1361-1366.
[23] Gandra, E. A., Fernandez, M. A., Silva, J. A., & Silva, W. P. d. (2016). Detection by multiplex PCR of Staphylococcus aureus, S. intermedius and S. hyicus in artificially contaminated milk. Ciencia Rural, 46(8), 1418- 1423.
[24] Garofalo, C., Bancalari, E., Milanovic, V., Cardinali, F., Osimani, A., Sardaro, M. L. S., ... Clementi, F. (2017). Study of the bacterial diversity of foods: PCR­ DGGE versus LH-PCR. International journal of food microbiology, 242, 24-36.
[25] Gilbert, R., De Louvois, J., Donovan, T., Little, C., Nye, K., Ribeiro, C., ... Bolton, F. (2000). Guidelines for the microbiological quality of some ready-to-eat foods sampled at the point of sale. PHLS Advisory Committee for Food and Dairy Products. Communicable disease and public health, 3(3), 163-167.
[26] Gill, A. (2017). The importance of bacterial culture to food microbiology in the age of genomics. Frontiers in microbiology, 8, 777.
[27] Hagen, R. M., Seegmiiller, I., Navai, J., Kappstein, I., Lehn, N., & Miethke, T. (2005). Development of a real­ time PCR assay for rapid identification of methicillin­ resistant Staphylococcus aureus from clinical samples. International journal of medical microbiology, 295(2), 77- 86.
[28] Hennekinne, J.-A., Ostyn, A., Guillier, F., Herbin, S., Prufer, A.-L., & Dragacci, S. (2010). How should staphylococcal food poisoning outbreaks be characterized? Toxins, 2(8), 2106-2116.
[29] Hennekinne, J., & Le Loir, Y. (2014). Staphylococcus: Detection by Cultural and Modern Techniques.Hwang, S. M., Kim, M. S., Park, K. U., Song, J., & Kim, E.-C. (2011). Tuf gene sequence analysis has greater discriminatory power than 16S rRNA sequence analysis in identification of clinical isolates of coagulase-negative staphylococci. Journal of clinical microbiology, 49(12), 4142-4149.
[30] Iversen, S., Johannesen, T. B., Ingham, A. C., Edslev, S. M., Tevell, S., Mansson, E., . Andersen, P. S. (2020). Alteration of bacterial communities in anterior nares and skin sites of patients undergoing arthroplasty surgery: analysis by 16S rRNA and staphylococcal­ specific tuf gene sequencing. Microorganisms, 8(12), 1977.
[31] Kassem, I. I., Esseili, M., & Sigler, V. (2011). Detection and differentiation of staphylococcal contamination of clinical surfaces using denaturing gradient gel electrophoresis. Journal of Hospital Infection, 78(3), 187-193.
[32] Khosravi, A. D., Roointan, M., Montazeri, E. A., Aslani, S., Hashemzadeh, M., & Soodejani, M. T. (2018). Application of tuf gene sequence analysis for the identification of species of coagulase-negative staphylococci in clinical samples and evaluation of their antimicrobial resistance pattern. Infection and drug resistance, 11, 1275.
[33] Kim, J., Hong, J., Lim, J.-A., Heu, S., & Roh, E. (2018). Improved multiplex PCR primers for rapid identification of coagulase-negative staphylococci. Archives of microbiology, 200(1), 73-83.
[34] Kloos, W. E., & Schleifer, K. H. (1975). Simplified scheme for routine identification of human Staphylococcus species. Journal of clinical Microbiology, 1(1), 82-88.
[35] Kord, M., Ardebili, A., Jamalan, M., Jahanbakhsh, R., Behnampour, N., & Ghaemi, E. A. (2018). Evaluation of Biofilm Formation and Presence of lea Genes in Staphylococcus epidermidis Clinical Isolates. Osong public health and research perspectives, 9(4), 160.
[36] Kumar, T., Murali, H., & Batra, H. (2009). Simultaneous detection of pathogenic B. cereus, S. aureus and L. monocytogenes by multiplex PCR. Indian journal of microbiology, 49(3), 283-289.
[37] Martineau, F., Picard, F. J., Ke, D., Paradis, S., Roy, H., Ouellette, M., & Bergeron, M. G. (2001). Development of a PCR assay for identification of staphylococci at genus and species levels. Journal of clinical microbiology, 39(7), 2541-2547.
[39] Morot-Bizot, S. C., Talon, R., & Leroy, S. (2004). Development of a multiplex PCR for the identification of Staphylococcus genus and four staphylococcal species isolated from food. Journal of Applied Microbiology, 97(5), 1087-1094.
[40] Nakano, S., Kobayashi, T., Funabiki, K., Matsumura, A., Nagao, Y., & Yamada, T. (2004). PCR detection of Bacillus and Staphylococcus in various foods. Journal of food protection, 67(6), 1271-1277.
[41] Pui, C. F., Wong, W. C., Chai, L. C., Lee, H. Y., Noorlis, A., Zainazor, T. C. T., .  Nakaguchi, Y. (2011). Multiplex PCR for the concurrent detection and differentiation of Salmonella spp., Salmonella Typhi and Salmonella Typhimurium. Tropical medicine and health, 39(1), 9-15.
[42] Ramesh, A., Padmapriya, B., Chrashekar, A., & Varadaraj, M. (2002). Application of a convenient DNA extraction method and multiplex PCR for the direct detection of Staphylococcus aureus and Yersinia enterocolitica in milk samples. Molecular and Cellular Probes, 16(4), 307-314.
[43] Tmcikova, T., Hruskova, V., Oravcova, K., Pangallo, D., & Kaclikova, E. (2009). Rapid and sensitive detection of Staphylococcus aureus in food using selective enrichment and real-time PCR targeting a new gene marker. Food analytical methods, 2(4), 241.
[44] Wang,  Y.,  &  Salazar,  J.  K.  (2016). Culture-independent rapid detection methods for bacterial pathogens and toxins in food matrices. Comprehensive Reviews in Food Science and Food Safety, 15(1), 183-205.
[45] Wei, S., Daliri, E. B. M., Chelliah, R., Park, B. J., Lim, J. S., Baek, M. A., . . . Oh, D. H. (2019). Development of a multiplex real-time PCR for simultaneous detection of Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus in food samples. Journal of food safety, 39(1), e12558.
[46] Wilson, I., Cooper, J. E., & Gilmour, A. (1991). Detection of enterotoxigenic Staphylococcus aureus in dried skimmed milk: use of the polymerase chain reaction for amplification and detection of staphylococcal enterotoxin genes entB and entCl and the thermonuclease gene nuc. Appl. Environ. Microbiol., 57(6), 1793-1798.