Bioremediation of Chloride and Nitrate in Industrial Wastewater Using Native Enterococcus faecalis FF2021 and Two Algal Strains

Document Type : Research Paper

Authors

1 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute, Tehran, Iran.

2 Department of Natural Sciences, Bowie State University, 14000 Jericho Park Rd., Bowie 20715, MD, USA.

3 Department of Biology, Payam Noor University (PNU), Tehran, Iran.

4 Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P. O. Box: 1439956191, Tehran, Iran.

Abstract

Industrial plants and microalgae require clean water for proper growth and have been increasingly explored for their roles in wastewater treatment. Wastewater commonly contains anions such as chloride, sulfate, and nitrate, originating from aquaculture, hatcheries, and industrial processes. These anions can contaminate surface and groundwater, posing serious threats to aquatic life and environmental health. This study investigated the bioremediation of chloride and nitrate from aqueous environments using Enterococcus faecalis FF2021, a native bacterial strain isolated from industrial wastewater, in combination with two algal species under laboratory conditions. Identification of Enterococcus faecalis FF2021 was confirmed through biochemical tests, PCR, and 16s rRNA gene sequencing. Experimental data on chloride and nitrate removal were analyzed using the ion chromatography (IC) method. To evaluate the ion-removal efficiency, factors such as culture medium, bacterial concentration, and microorganism type were assessed. The results showed that Chlorella vulgaris consistently outperformed Chlorococcum sp. in the removal of both nitrate and chloride ions. Native E. faecalis FF2021 possesses strong ionic tolerance but limited remediation capacity alone, which can be significantly enhanced through synergistic interaction with Chlorella vulgaris and Chlorococcum sp. in a consortium system. Moreover, integrating tolerant bacteria with high-performing microalgae might form synergistic consortia capable of improving overall bioremediation efficiency in saline or nutrient-rich industrial effluents.

Keywords

Main Subjects


Abdelsalam, M., Ewiss, M. Z., Khalefa, H. S., Mahmoud, M. A., Elgendy, M. Y., & Abdel-Moneam, D. A. (2021). Coinfections of Aeromonas spp., Enterococcus faecalis, and Vibrio alginolyticus isolated from farmed Nile tilapia and African catfish in Egypt, with an emphasis on poor water quality. Microbial Pathogenesis, 160, 105213. https://doi.org/10.1016/j.micpath.2021.105213
Abinandan, S., Subashchandrabose, S. R., Venkateswarlu, K., & Megharaj, M. (2018). Nutrient removal and biomass production: Advances in microalgal biotechnology for wastewater treatment. Critical reviews in biotechnology, 38(8), 1244-1260. http://dx.doi.org/10.1080/07388551.2018.1472066
Adeniji, O. O., Sibanda, T., & Okoh, A. I. (2019). Recreational water quality status of the Kidd's Beach as determined by its physicochemical and bacteriological quality parameters. Heliyon, 5(6). https://doi.org/10.1016/j.heliyon.2019.e01893
ALCALDE, S., & GAWLIK, B. (2014). Water Reuse in Europe-Relevant guidelines, needs for and barriers to innovation. http://dx.doi.org/10.2788/29234
Aldaby, E. S., Danial, A. W., & Abdel-Basset, R. (2024). Photosynthesizing carbonate/nitrate into Chlorococcum humicola biomass for biodiesel and Bacillus coagulans-based biohydrogen production. Microbial Cell Factories, 23(1), 247. https://doi.org/10.1186/s12934-024-02511-0
Ali, N., Hameed, A., & Ahmed, S. (2009). Physicochemical characterization and bioremediation perspective of textile effluent, dyes and metals by indigenous bacteria. Journal of hazardous materials, 164(1), 322-328. https://doi.org/10.1016/j.jhazmat.2008.08.006
Alkhadra, M. A., Su, X., Suss, M. E., Tian, H., Guyes, E. N., Shocron, A. N., Tedesco, M. (2022). Electrochemical methods for water purification, ion separations, and energy conversion. Chemical reviews, 122(16), 13547-13635. https://doi.org/10.1021/acs.chemrev.1c00396
Arnone, R. D., & Perdek Walling, J. (2007). Waterborne pathogens in urban watersheds. Journal of Water and Health, 5(1), 149-162. https://doi.org/10.2166/wh.2006.001
Asaad, A. A., & Amer, A. S. (2024). Evaluation of Chlorella vulgaris biosorption capacity for phosphate and nitrate removal from wastewater. Scientific Reports, 14(1), 884. http://dx.doi.org/10.1038/s41598-023-50748-3
Association, A. P. H. (1926). Standard methods for the examination of water and wastewater (Vol. 6). American Public Health Association.
Awais, M., Shah, A. A., Hameed, A., & Hasan, F. (2007). Isolation, identification and optimization of bacitracin produced by Bacillus sp. Pakistan Journal of Botany, 39(4), 1303.
Bahar, M. M., Megharaj, M., & Naidu, R. (2013). Toxicity, transformation and accumulation of inorganic arsenic species in a microalga Scenedesmus sp. isolated from soil. Journal of Applied Phycology, 25, 913-917. http://dx.doi.org/10.1007/s10811-012-9923-0
Bakshi, B., Doucette, E. M., & Kyser, S. J. (2021). Centralized softening as a solution to chloride pollution: an empirical analysis based on Minnesota cities. PloS one, 16(2), e0246688. https://doi.org/10.1371/journal.pone.0246688
Barbin, A., Froment, O., Boivin, S., Marion, M.-J., Belpoggi, F., Maltoni, C., & Montesano, R. (1997). p53 gene mutation pattern in rat liver tumors induced by vinyl chloride. Cancer research, 57(9), 1695-1698.
Bhatnagar, A., & Sillanpää, M. (2017). Removal of natural organic matter (NOM) and its constituents from water by adsorption–a review. Chemosphere, 166, 497-510. https://doi.org/10.1016/j.chemosphere.2016.09.098
Blanch, A., Caplin, J., Iversen, A., Kühn, I., Manero, A., Taylor, H., & Vilanova, X. (2003). Comparison of enterococcal populations related to urban and hospital wastewater in various climatic and geographic European regions. Journal of Applied Microbiology, 94(6), 994-1002. https://doi.org/10.1046/j.1365-2672.2003.01919.x
Buldini, P. L., Cavalli, S., & Sharma, J. L. (2002). Matrix removal for the ion chromatographic determination of some trace elements in milk. Microchemical Journal, 72(3), 277-284. http://dx.doi.org/10.1016/S0026-265X(02)00039-5
Camargo, J. A., Alonso, A., & Salamanca, A. (2005). Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere, 58(9), 1255-1267. https://doi.org/https://doi.org/10.1016/j.chemosphere.2004.10.044
Carey, S. A., Goldstein, R. E. R., Gibbs, S. G., Claye, E., He, X., & Sapkota, A. R. (2016). Occurrence of vancomycin-resistant and-susceptible Enterococcus spp. in reclaimed water used for spray irrigation. Environmental research, 147, 350-355. https://doi.org/10.1016/j.envres.2016.02.030
Christofilogiannis, P. (2001). Current inoculation methods in MIC determination. Aquaculture, 196(3-4), 297-302. https://doi.org/10.1016/S0044-8486(01)00542-7
Doud, C., Scott, H. M., & Zurek, L. (2014). Role of house flies in the ecology of Enterococcus faecalis from wastewater treatment facilities. Microbial ecology, 67, 380-391. https://doi.org/10.1007/s00248-013-0337-6
Drewniak, L., & Sklodowska, A. (2013). Arsenic-transforming microbes and their role in biomining processes. Environmental Science and Pollution Research, 20, 7728-7739. http://dx.doi.org/10.1007/s11356-012-1449-0
Edwards, U., Rogall, T., Blöcker, H., Emde, M., & Böttger, E. C. (1989). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Research, 17(19), 7843-7853. https://doi.org/10.1093/nar/17.19.7843
Elahi, Y., Nowroozi, J., & Fard, R. M. N. (2021). Isolation and characterization of bacteriophages from wastewater sources on Enterococcus spp. isolated from clinical samples. Iranian Journal of Microbiology, 13(5), 671. https://doi.org/10.18502/ijm.v13i5.7434
Empadinhas, N., & da Costa, M. S. (2008). Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int Microbiol, 11(3), 151-161. http://dx.doi.org/10.2436/20.1501.01.55
Fritz, J. S. (1987). Ion chromatography. Analytical Chemistry, 59(4), 335A-344A.
Fulekar, M. (2009). Bioremediation of fenvalerate by Pseudomonas aeruginosa in a scale up bioreactor. Rom Biotechnol Lett, 14, 4900-4905.
Ghasemi, R., Rastkhah, E., Naij, S., Rabiee, T., Hosseinpour, H., Naeij, S., Fatemi, F. (2023). Optimization of uranium bioreduction by shewanella RCRI7 using Response Surface Design Method (RSM) in industrial waste. Journal of Nuclear Science, Engineering and Technology (JONSAT), 44(1), 15-23. http://dx.doi.org/10.24200/nst.2023.1329
Gupta, S., Pawar, S. B., & Pandey, R. (2019). Current practices and challenges in using microalgae for treatment of nutrient rich wastewater from agro-based industries. Science of the total environment, 687, 1107-1126. https://doi.org/10.1016/j.scitotenv.2019.06.115
Harwood, V., Delahoya, N., Ulrich, R., Kramer, M., Whitlock, J., Garey, J., & Lim, D. (2004). Molecular confirmation of Enterococcus faecalis and E. faecium from clinical, faecal and environmental sources. Letters in Applied Microbiology, 38(6), 476-482. http://dx.doi.org/10.1111/j.1472-765X.2004.01518.x
Huët, M. A. L., & Puchooa, D. (2017). Bioremediation of heavy metals from aquatic environment through microbial processes: A potential role for probiotics. Journal of Applied Biology & Biotechnology Vol, 5(6), 14-23.http://dx.doi.org/10.7324/JABB.2017.50603
Inthorn, D., Sidtitoon, N., Silapanuntakul, S., & Incharoensakdi, A. (2002). Sorption of mercury, cadmium and lead by microalgae. Sci Asia, 28(3), 253-261. http://dx.doi.org/10.2306/scienceasia1513-1874.2002.28.253
Jaakkola, J. J., & Knight, T. L. (2008). The role of exposure to phthalates from polyvinyl chloride products in the development of asthma and allergies: a systematic review and meta-analysis. Environmental health perspectives, 116(7), 845-853. https://doi.org/10.1289/ehp.10846
Jahani, S., Fatemi, F., Firoz-e-zare, M., & Zolfaghari, M. (2015). Isolation and characterization of Acidithiobacillus ferrooxidans strain FJS from Ramsar, Iran. Electronic Journal of Biology, 11(4), 138-146.
Kaviraj, M., Kumar, U., Snigdha, A., & Chatterjee, S. (2024). Nitrate reduction to ammonium: a phylogenetic, physiological, and genetic aspects in Prokaryotes and eukaryotes. Archives of Microbiology, 206(7), 297. http://dx.doi.org/10.1007/s00203-024-04009-0
Kim, M.-A., Rosa, V., & Min, K.-S. (2020). Characterization of Enterococcus faecalis in different culture conditions. Scientific Reports, 10(1), 21867. https://www.nature.com/articles/s41598-020-78998-5
Li, Q., Lu, X., Shuang, C., Qi, C., Wang, G., Li, A., & Song, H. (2019). Preferential adsorption of nitrate with different trialkylamine modified resins and their preliminary investigation for advanced treatment of municipal wastewater. Chemosphere, 223, 39-47. https://doi.org/10.1016/j.chemosphere.2019.02.008
Lim, S.-L., Chu, W.-L., & Phang, S.-M. (2010). Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresource technology, 101(19), 7314-7322. https://doi.org/10.1016/j.biortech.2010.04.092
Mahmoud, M. A., Abdelsalam, M., Mahdy, O. A., El Miniawy, H. M., Ahmed, Z. A., Osman, A. H., Ewiss, M. Z. (2016). Infectious bacterial pathogens, parasites and pathological correlations of sewage pollution as an important threat to farmed fishes in Egypt. Environmental pollution, 219, 939-948. https://doi.org/10.1016/j.envpol.2016.09.044
Manero, A., Vilanova, X., Cerdà-Cuéllar, M., & Blanch, A. R. (2002). Characterization of sewage waters by biochemical fingerprinting of Enterococci. Water research, 36(11), 2831-2835. https://doi.org/10.1016/S0043-1354(01)00486-9
Marcusson, J. A. (1996). Contact allergies to nickel sulfate, gold sodium thiosulfate and palladium chloride in patients claiming side‐effects from dental alloy components. Contact dermatitis, 34(5), 320-323. https://doi.org/10.1111/j.1600-0536.1996.tb02215.x
Metsoviti, M. N., Papapolymerou, G., Karapanagiotidis, I. T., & Katsoulas, N. (2019). Effect of light intensity and quality on growth rate and composition of Chlorella vulgaris. Plants, 9(1), 31. http://dx.doi.org/10.3390/plants9010031
Mook, W., Chakrabarti, M., Aroua, M., Khan, G., Ali, B., Islam, M., & Hassan, M. A. (2012). Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: a review. Desalination, 285, 1-13. https://doi.org/10.1016/j.desal.2011.09.029
Nagulapally, S. R., Ahmad, A., Henry, A., Marchin, G. L., Zurek, L., & Bhandari, A. (2009). Occurrence of ciprofloxacin‐, trimethoprim‐sulfamethoxazole‐, and vancomycin‐resistant bacteria in a municipal wastewater treatment plant. Water Environment Research, 81(1), 82-90. https://doi.org/10.2175/106143008x304596
Ontañon, O. M., González, P. S., & Agostini, E. (2015). Optimization of simultaneous removal of Cr (VI) and phenol by a native bacterial consortium: its use for bioaugmentation of co‐polluted effluents. Journal of Applied Microbiology, 119(4), 1011-1022. https://doi.org/10.1111/jam.12913
Owoseni, M., & Okoh, A. (2017). Evidence of emerging challenge of chlorine tolerance of Enterococcus species recovered from wastewater treatment plants. International Biodeterioration & Biodegradation, 120, 216-223. https://doi.org/10.1016/j.ibiod.2017.02.016
Owoseni, M. C., Olaniran, A. O., & Okoh, A. I. (2017). Chlorine tolerance and inactivation of Escherichia coli recovered from wastewater treatment plants in the Eastern Cape, South Africa. Applied Sciences, 7(8), 810. https://doi.org/10.3390/app7080810
Paisio, C. E., Quevedo, M. R., Talano, M. A., González, P. S., & Agostini, E. (2014). Application of two bacterial strains for wastewater bioremediation and assessment of phenolics biodegradation. Environmental technology, 35(14), 1802-1810. https://doi.org/10.1080/09593330.2014.882994
Pal, S., & Chakraborty, K. (2017). Different aspects of chloride in freshwater: a review. International Journal of Current Trends in Science and Technology, 7(8), 20295-20303.
Pandey, V. C. (2012). Phytoremediation of heavy metals from fly ash pond by Azolla caroliniana. Ecotoxicology and Environmental Safety, 82, 8-12. https://doi.org/10.1016/j.ecoenv.2012.05.002
Peng, H., & Guo, J. (2020). Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: a review. Environmental Chemistry Letters, 18(6), 2055-2068. http://dx.doi.org/10.1007/s10311-020-01058-x
Pereira, A. P., Antunes, P., Bierge, P., Willems, R. J. L., Corander, J., Coque, T. M., Andam, C. P. (2023). Unraveling Enterococcus susceptibility to quaternary ammonium compounds: genes, phenotypes, and the impact of environmental conditions. Microbiology Spectrum, 11(5). https://doi.org/https://doi.org/10.1128/spectrum.02324-23
Perumalsamy, M. (2024). Bioremediation of dairy industry wastewater and assessment of nutrient removal potential of Chlorella vulgaris. Biomass Conversion and Biorefinery, 14(9), 10335-10346. http://dx.doi.org/10.1007/s13399-022-03068-x
Phang, S., & Chu, W. (2004). The University of Malaya Algae Culture Collection (UMACC) and potential applications of a unique Chlorella from the collection. Jap J Phycol, 52, 221-224.
Popli, S., & Patel, U. D. (2015). Destruction of azo dyes by anaerobic–aerobic sequential biological treatment: a review. International Journal of Environmental Science and Technology, 12, 405-420.
Qi, L., Liu, X., Gao, Y., Yang, Q., Wang, Z., Zhang, N., & Su, X. (2024). Interactions between bacteria and microalgae in microalgal-bacterial symbiotic wastewater treatment systems: mechanisms and influencing factors. Aquatic Microbial Ecology, 90, 41-60. http://dx.doi.org/10.3354/ame02007
Rai, U., Tripathi, R., Singh, N., Upadhyay, A., Dwivedi, S., Shukla, M., Nautiyal, C. (2013). Constructed wetland as an ecotechnological tool for pollution treatment for conservation of Ganga River. Bioresource technology, 148, 535-541. https://doi.org/10.1016/j.biortech.2013.09.005
Ramseier, M. K., von Gunten, U., Freihofer, P., & Hammes, F. (2011). Kinetics of membrane damage to high (HNA) and low (LNA) nucleic acid bacterial clusters in drinking water by ozone, chlorine, chlorine dioxide, monochloramine, ferrate (VI), and permanganate. Water research, 45(3), 1490-1500. https://doi.org/10.1016/j.watres.2010.11.016
Rath, B. (2012). Microalgal bioremediation: current practices and perspectives. Journal of Biochemical Technology, 3(3), 299-304.
Rawat, I., Kumar, R. R., Mutanda, T., & Bux, F. (2013). Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Applied energy, 103, 444-467. https://doi.org/10.1016/j.apenergy.2012.10.004
Renganathan, P., Gaysina, L. A., García Gutiérrez, C., Rueda Puente, E. O., & Sainz-Hernández, J. C. (2025). Harnessing Engineered Microbial Consortia for Xenobiotic Bioremediation: Integrating Multi-Omics and AI for Next-Generation Wastewater Treatment. Journal of Xenobiotics, 15(4). http://dx.doi.org/10.3390/jox15040133
Rodríguez-Chueca, J., Morales, M., Mosteo, R., Ormad, M., & Ovelleiro, J. (2013). Inactivation of Enterococcus faecalis, Pseudomonas aeruginosa and Escherichia coli present in treated urban wastewater by coagulation—flocculation and photo-Fenton processes. Photochemical & photobiological sciences, 12(5), 864-871. http://dx.doi.org/10.1039/c3pp25352j
Sandrin, T. R., & Maier, R. M. (2003). Impact of metals on the biodegradation of organic pollutants. Environmental Health Perspectives, 111(8), 1093-1101. https://doi.org/10.1289/ehp.5840
Sanjay, M. S., Sudarsanam, D., Raj, G. A., & Baskar, K. (2020). Isolation and identification of chromium reducing bacteria from tannery effluent. Journal of King Saud University-Science, 32(1), 265-271. https://doi.org/10.1016/j.jksus.2018.05.001
Shailemo, D. H., Kwaambwa, H. M., Kandawa-Schulz, M., & Msagati, T. A. (2016). Antibacterial activity of Moringa ovalifolia and Moringa oleifera methanol, N-hexane and water seeds and bark extracts against pathogens that are implicated in water borne diseases. Green and Sustainable Chemistry, 6(2), 71-77. http://dx.doi.org/10.4236/gsc.2016.62006
Sharma, S. (2012). Bioremediation: features, strategies and applications. Asian Journal of Pharmacy and Life Science, 2231, 4423.
Shukla, K. P., Singh, N. K., & Sharma, S. (2010). Bioremediation: developments, current practices and perspectives. Genet Eng Biotechnol J, 3, 1-20.
Sial, A., Zhang, B., Zhang, A., Liu, K., Imtiaz, S. A., & Yashir, N. (2021). Microalgal–bacterial synergistic interactions and their potential influence in wastewater treatment: a review. BioEnergy Research, 14(3), 723-738. https://link.springer.com/article/10.1007/s12155-020-10213-9  DOI:10.1007/s12155-020-10213-9
Simonet, J., & Gantzer, C. (2006). Degradation of the Poliovirus 1 genome by chlorine dioxide. Journal of Applied Microbiology, 100(4), 862-870. https://doi.org/10.1111/j.1365-2672.2005.02850.x
Singh, R. (2014). Microorganism as a tool of bioremediation technology for cleaning environment: a review. Proceedings of the International Academy of Ecology and Environmental Sciences, 4(1), 1. DOI:10.0000/issn-2220-8860-piaees-2014-v4-0001
Singh, Y., & Saxena, M. K. (2022). Insights into the recent advances in nano-bioremediation of pesticides from the contaminated soil. Frontiers in microbiology, 13, 982611. http://dx.doi.org/10.3389/fmicb.2022.982611
Sonone, S. S., Jadhav, S., Sankhla, M. S., & Kumar, R. (2020). Water contamination by heavy metals and their toxic effect on aquaculture and human health through food Chain. Lett. Appl. NanoBioScience, 10(2), 2148-2166. http://dx.doi.org/10.33263/LIANBS102.21482166
Subashchandrabose, S. R., Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2011). Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnology advances, 29(6), 896-907. https://doi.org/10.1016/j.biotechadv.2011.07.009
Upadhyay, A. K., Singh, L., Singh, R., Singh, D., & Saxena, G. (2022). Bioaccumulation and toxicity of as in the alga Chlorococcum sp.: prospects for as bioremediation. Bulletin of Environmental Contamination and Toxicology, 1-7. https://doi.org/10.1007/s00128-020-02964-0
Vandamme, P., Segers, P., Vancanneyt, M., Van Hove, K., Mutters, R., Hommez, J., Falsen, E. (1994). Ornithobacterium rhinotracheale gen. nov., sp. nov., isolated from the avian respiratory tract. International Journal of Systematic and Evolutionary Microbiology, 44(1), 24-37. https://doi.org/10.1099/00207713-44-1-24
Ward, M. H., Jones, R. R., Brender, J. D., De Kok, T. M., Weyer, P. J., Nolan, B. T., Van Breda, S. G. (2018). Drinking water nitrate and human health: an updated review. International journal of environmental research and public health, 15(7), 1557. https://doi.org/10.3390/ijerph15071557
Zarei, M., Fatemi, F., Ghasemi, R., Mir-Derikvand, M., Hosseinpour, H., & Samani, T. R. (2023). The effect of not-anaerobicization and discolored bacteria on uranium reduction by Shewanella sp. RCRI7. Applied Radiation and Isotopes, 192, 110551. http://dx.doi.org/10.1016/j.apradiso.2022.110551
Zarei, M., Mir-Derikvand, M., Hosseinpour, H., Samani, T. R., Ghasemi, R., & Fatemi, F. (2022). U (VI) tolerance affects Shewanella sp. RCRI7 biological responses: growth, morphology and bioreduction ability. Archives of Microbiology, 204(1), 1-13. http://dx.doi.org/10.21203/rs.3.rs-467292/v1
Zeki, S., Aslan, A., Burak, S., & Rose, J. (2021). Occurrence of a human‐associated microbial source tracking marker and its relationship with faecal indicator bacteria in an urban estuary. Letters in Applied Microbiology, 72(2), 167-177. https://doi.org/10.1111/lam.13405
Zhu, L., Hu, T., Li, S., Nugroho, Y. K., Li, B., Cao, J., Hiltunen, E. (2020). Effects of operating parameters on algae Chlorella vulgaris biomass harvesting and lipid extraction using metal sulfates as flocculants. Biomass and bioenergy, 132, 105433. https://doi.org/10.1016/j.biombioe.2019.105433