Postbiotics: A New Approach from Gut Health to Cancer Therapy

Document Type : Review Paper

Authors

Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran

Abstract

Recent research has increasingly highlighted the potential of postbiotics, non-viable microbial metabolites and cellular components, in enhancing human health, particularly through gut microbiota modulation and cancer therapy.  Unlike probiotics, postbiotics offer advantages such as improved stability, safety, and ease of standardization. Their ability to provide therapeutic benefits without the risks associated with live microbes makes them promising candidates for clinical applications, as cancer adjuvants, and functional food applications. These bioactive compounds can enhance treatment outcomes and reduce side effects by exhibiting multiple anti-cancer mechanisms, including disrupting carcinogenic pathways, enhancing gut barrier integrity, and reducing inflammation. Evidence from in vitro and in vivo studies demonstrates their potential against various cancers, including colorectal, breast, gastric, and liver cancers. Despite these promising preclinical results, several challenges hinder their clinical translation, including variability in formulations, lack of standardized production methods, and limited clinical trials to confirm efficacy and safety. This review provides a comprehensive overview of the evolving definitions, classifications, and sources of postbiotics, as well as the mechanisms through which they may influence cancer development and progression, and highlights additional health benefits they confer.  Moreover, it underscores the critical need for further research to identify specific bioactive compounds, optimize delivery systems, and establish safety profiles through rigorous clinical investigations. Harnessing postbiotics could revolutionize cancer prevention and treatment strategies, offering safe, effective, and adjunctive therapeutic options that integrate with personalized medicine and functional nutrition.

Keywords

Main Subjects


Aguilar-Toalá, J., Garcia-Varela, R., Garcia, H., Mata-Haro, V., González-Córdova, A., Vallejo-Cordoba, B., & Hernández-Mendoza, A. (2018). Postbiotics: An evolving term within the functional foods field. Trends in Food Science & Technology, 75, 105–114. https://doi.org/10.1016/j.tifs.2018.03.009
Altieri, C., Filippone, A., Bevilacqua, A., Corbo, M. R., & Sinigaglia, M. (2024). Lactobacilli and Bifidobacteria: A parapostbiotic approach to study and explain their mutual bioactive influence. Foods, 13(18), 2966. https://doi.org/10.3390/foods13182966
Alvarez-Sieiro, P., Montalbán-López, M., Mu, D., & Kuipers, O. P. (2016). Bacteriocins of lactic acid bacteria: Extending the family. Applied Microbiology and Biotechnology, 100, 2939–2951. https://doi.org/10.1007/s00253-016-7343-9
Amiri, S., Rezazadeh-Bari, M., Alizadeh-Khaledabad, M., Rezaei-Mokarram, R., & Sowti-Khiabani, M. (2021). Fermentation optimization for co-production of postbiotics by Bifidobacterium lactis BB12 in cheese whey. Waste and Biomass Valorization, 12, 5869–5884. https://doi.org/10.1007/s12649-021-01429-7
Ananta, E., Volkert, M., & Knorr, D. (2005). Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. International Dairy Journal, 15(4), 399–409. https://doi.org/10.1016/j.idairyj.2004.08.004
Arroyo, M., de la Mata, I., Barreiro, C., García, J. L., & Barredo, J. L. (2023). Application of microbial enzymes as drugs in human therapy and healthcare. In A. K. Singh, & S. K. Dwivedi (Eds.), Biotechnology of microbial enzymes (pp. 341–373). Elsevier. https://doi.org/10.1016/B978-0-443-19059-9.00002-5
Asoudeh-Fard, A., Beygi, M. Y., Parsaei, A., Mohkam, M., Asoudeh-Fard, M., & Gholami, A. (2024). Postbiotic metabolites derived from Lactobacillus fermentum as potent antiproliferative bioresources on HeLa cells with promising biocompatibility. BMC Complementary Medicine and Therapies, 24(1), 420. https://doi.org/10.1186/s12906-024-04730-9
Balendra, V., Rosenfeld, R., Amoroso, C., Castagnone, C., Rossino, M. G., Garrone, O., & Ghidini, M. (2024). Postbiotics as adjuvant therapy in cancer care. Nutrients, 16(15), 2400. https://doi.org/10.3390/nu16152400
Batta, K., Thakur, M., & Meghwal, M. (2024). Vitamins production from probiotic bacteria. In M. Meghwal, M. Thakur, & K. Batta (Eds.), Microbial vitamins and carotenoids in food biotechnology (pp. 149–177). Elsevier. https://doi.org/10.1016/B978-0-443-15528-4.00006-4
Bentley, R., & Meganathan, R. (1982). Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiological Reviews, 46(3), 241–280. https://doi.org/10.1128/mr.46.3.241-280.1982
Bindels, L. B., Porporato, P., Dewulf, E., Verrax, J., Neyrinck, A. M., Martin, J., Scott, K., Buc Calderon, P., Feron, O., & Muccioli, G. (2012). Gut microbiota-derived propionate reduces cancer cell proliferation in the liver. British Journal of Cancer, 107(8), 1337–1344. https://doi.org/10.1038/bjc.2012.409
Birmpa, A., Sfika, V., & Vantarakis, A. (2013). Ultraviolet light and ultrasound as non-thermal treatments for the inactivation of microorganisms in fresh ready-to-eat foods. International Journal of Food Microbiology, 167(1), 96–102. https://doi.org/10.1016/j.ijfoodmicro.2013.06.005
Bock, P. M., Telo, G. H., Ramalho, R., Sbaraini, M., Leivas, G., Martins, A. F., & Schaan, B. D. (2021). The effect of probiotics, prebiotics or synbiotics on metabolic outcomes in individuals with diabetes: A systematic review and meta-analysis. Diabetologia, 64(1), 26–41. https://doi.org/10.1007/s00125-020-05295-1
Burgess, C. M., Smid, E. J., Rutten, G., & Van Sinderen, D. (2006). A general method for selection of riboflavin-overproducing food grade micro-organisms. Microbial Cell Factories, 5, 24. https://doi.org/10.1186/1475-2859-5-24
Chai, K. F., Voo, A. Y. H., & Chen, W. N. (2020). Bioactive peptides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future development. Comprehensive Reviews in Food Science and Food Safety, 19(6), 3825–3885. https://doi.org/10.1111/1541-4337.12651
Chen, C., Su, Y., Li, S., Man, C., Jiang, Y., Qu, B., Yang, X., & Guo, L. (2024). Advances in oligosaccharides and polysaccharides with different structures as wall materials for probiotics delivery: A review. International Journal of Biological Macromolecules, 277, 134468.
Collado, M., Vinderola, G., & Salminen, S. (2019). Postbiotics: Facts and open questions. A position paper on the need for a consensus definition. Beneficial Microbes, 10(7), 711–720. https://doi.org/10.3920/BM2019.0015
Contestabile, R., di Salvo, M. L., Bunik, V., Tramonti, A., & Vernì, F. (2020). The multifaceted role of vitamin B6 in cancer: Drosophila as a model system to investigate DNA damage. Open Biology, 10(3), 200034. https://doi.org/10.1098/rsob.200034
Cortés‐Martín, A., Selma, M. V., Tomás‐Barberán, F. A., González‐Sarrías, A., & Espín, J. C. (2020). Where to look into the puzzle of polyphenols and health? The postbiotics and gut microbiota associated with human metabotypes. Molecular Nutrition & Food Research, 64(9), 1900952. https://doi.org/10.1002/mnfr.201900952
Cotter, P. D., Ross, R. P., & Hill, C. (2013). Bacteriocins—a viable alternative to antibiotics? Nature Reviews Microbiology, 11(2), 95–105. https://doi.org/10.1038/nrmicro2937
Dameshghian, M., Tafvizi, F., Tajabadi Ebrahimi, M., & Hosseini Doust, R. (2024). Anticancer potential of Postbiotic derived from Lactobacillus brevis and Lactobacillus casei: In vitro analysis of breast Cancer cell line. Probiotics and Antimicrobial Proteins. https://doi.org/10.1007/s12602-024-10288-2
Darbandi, A., Asadi, A., Mahdizade Ari, M., Ohadi, E., Talebi, M., Halaj Zadeh, M., Darb Emamie, A., Ghanavati, R., & Kakanj, M. (2022). Bacteriocins: Properties and potential use as antimicrobials. Journal of Clinical Laboratory Analysis, 36(1), e24093. https://doi.org/10.1002/jcla.24093
de Almada, C. N., Almada, C. N., Martinez, R. C., & Sant'Ana, A. S. (2016). Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends in Food Science & Technology, 58, 96–114. https://doi.org/10.1016/j.tifs.2016.09.011
Derakhshan-Sefidi, M., Bakhshi, B., & Rasekhi, A. (2024). Vibriocidal efficacy of Bifidobacterium bifidum and Lactobacillus acidophilus cell-free supernatants encapsulated in chitosan nanoparticles against multi-drug resistant Vibrio cholerae O1 El Tor. BMC Infectious Diseases, 24(1), 905. https://doi.org/10.1186/s12879-024-09810-2
Di, W., Zhang, L., Wang, S., Yi, H., Han, X., Fan, R., & Zhang, Y. (2017). Physicochemical characterization and antitumour activity of exopolysaccharides produced by Lactobacillus casei SB27 from yak milk. Carbohydrate Polymers, 171, 307–315. https://doi.org/10.1016/j.carbpol.2017.03.018
Dunand, E., Burns, P., Binetti, A., Bergamini, C., Peralta, G. H., Forzani, L., Reinheimer, J., & Vinderola, G. (2019). Postbiotics produced at laboratory and industrial level as potential functional food ingredients with the capacity to protect mice against Salmonella infection. Journal of Applied Microbiology, 127(1), 219–229. https://doi.org/10.1111/jam.14276
Escamilla, J., Lane, M. A., & Maitin, V. (2012). Cell-free supernatants from probiotic Lactobacillus casei and Lactobacillus rhamnosus GG decrease colon cancer cell invasion in vitro. Nutrition and Cancer, 64(6), 871–878. https://doi.org/10.1080/01635581.2012.700758
Fakharian, F., Sadeghi, A., Pouresmaeili, F., Soleimani, N., & Yadegar, A. (2024). Anti-inflammatory effects of extracellular vesicles and cell-free supernatant derived from Lactobacillus crispatus strain RIGLD-1 on Helicobacter pylori-induced inflammatory response in gastric epithelial cells in vitro. Folia Microbiologica, 69(4), 927–939. https://doi.org/10.1007/s12223-024-01138-3
Fesseha, H., Yilma, T. & Mekonnen E. (2024). Postbiotics and their role in healthy life. J Life Sci Biomed, 12(4), 64–76. https://doi.org/10.54203/jlsb.2022.8
Field, D., Ross, R. P., & Hill, C. (2018). Developing bacteriocins of lactic acid bacteria into next generation biopreservatives. Current Opinion in Food Science, 20, 1–6. https://doi.org/10.1016/j.cofs.2018.02.004
Franco, W. (2024). Postbiotics and parabiotics derived from bacteria and yeast: Current trends and future perspectives. CyTA-Journal of Food, 22(1), 2425838. https://doi.org/10.1080/19476337.2024.2425838
Gezginç, Y., Karabekmez-erdem, T., Tatar, H. D., Ayman, S., Ganiyusufoğlu, E., & Dayısoylu, K. S. (2022). Health promoting benefits of postbiotics produced by lactic acid bacteria: Exopolysaccharide. Biotech Studies, 31(2), 61–70. https://doi.org/10.38042/biotechstudies.1159166
Górska, A., Przystupski, D., Niemczura, M. J., & Kulbacka, J. (2019). Probiotic bacteria: A promising tool in cancer prevention and therapy. Current Microbiology, 76(8), 939–949. https://doi.org/10.1007/s00284-019-01679-8
Gurunathan, S., Ajmani, A., & Kim, J.-H. (2023). Extracellular nanovesicles produced by Bacillus licheniformis: A potential anticancer agent for breast and lung cancer. Microbial Pathogenesis, 185, 106396. https://doi.org/10.1016/j.micpath.2023.106396
Gurunathan, S., Thangaraj, P., Das, J., & Kim, J.-H. (2023). Antibacterial and antibiofilm effects of Pseudomonas aeruginosa derived outer membrane vesicles against Streptococcus mutans. Heliyon, 9(12), e22606. https://doi.org/10.1016/j.heliyon.2023.e22606
Heilfort, L., Kutschan, S., Dörfler, J., Freuding, M., Büntzel, J., Münstedt, K., & Hübner, J. (2022). A systematic review of the benefit of B-vitamins as a complementary treatment in cancer patients. Nutrition and Cancer, 75(1), 33–47. https://doi.org/10.1080/01635581.2022.2098348
Hosseini, H., Abbasi, A., Sabahi, S., Akrami, S., & Yousefi-Avarvand, A. (2024). Assessing the potential biological activities of postbiotics derived from Saccharomyces cerevisiae: An in vitro study. Probiotics and Antimicrobial Proteins, 16(4), 1348–1364. https://doi.org/10.1007/s12602-023-10117-y
Iida, N., Dzutsev, A., Stewart, C. A., Smith, L., Bouladoux, N., Weingarten, R. A., Molina, D. A., Salcedo, R., Back, T., & Cramer, S. (2013). Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science, 342(6161), 967–970. https://doi.org/10.1126/science.1240527
Izuddin, W. I., Humam, A. M., Loh, T. C., Foo, H. L., & Samsudin, A. A. (2020). Dietary postbiotic Lactobacillus plantarum improves serum and ruminal antioxidant activity and upregulates hepatic antioxidant enzymes and ruminal barrier function in post-weaning lambs. Antioxidants, 9(3), 250. https://doi.org/10.3390/antiox9030250
Ji, J., Jin, W., Liu, S. J., Jiao, Z., & Li, X. (2023). Probiotics, prebiotics, and postbiotics in health and disease. MedComm, 4(6), e420. https://doi.org/10.1002/mco2.420
John, P., Sriram, S., Palanichamy, C., Subash, P., & Sudandiradoss, C. (2025). A multifarious bacterial surface display: Potential platform for biotechnological applications. Critical Reviews in Microbiologyhttps://doi.org/10.1080/1040841X.2025.2461054
Johnson, C. N., Kogut, M. H., Genovese, K., He, H., Kazemi, S., & Arsenault, R. J. (2019). Administration of a postbiotic causes immunomodulatory responses in broiler gut and reduces disease pathogenesis following challenge. Microorganisms, 7(8), 268. https://doi.org/10.3390/microorganisms7080268
Jung, B.-J., Kim, H., & Chung, D.-K. (2022). Differential immunostimulatory effects of lipoteichoic acids isolated from four strains of Lactiplantibacillus plantarum. Applied Sciences, 12(3), 954. https://doi.org/10.3390/app12030954
Karbowiak, M., Gałek, M., Szydłowska, A., & Zielińska, D. (2022). The influence of the degree of thermal inactivation of probiotic lactic acid bacteria and their postbiotics on aggregation and adhesion inhibition of selected pathogens. Pathogens, 11(11), 1260. https://doi.org/10.3390/pathogens11111260
Kaur, H., Kaur, G., & Ali, S. A. (2024). Postbiotics implication in the microbiota-host intestinal epithelial cells mutualism. Probiotics and Antimicrobial Proteins, 16(2), 443–458. https://doi.org/10.1007/s12602-023-10062-w
Kim, S., Kim, G.-H., & Cho, H. (2021). Postbiotics for cancer prevention and treatment. Korean Journal of Microbiology, 57(3), 142–153. https://doi.org/10.7845/kjm.2021.1067
Kim, Y., Oh, S., Yun, H., Oh, S., & Kim, S. (2010). Cell‐bound exopolysaccharide from probiotic bacteria induces autophagic cell death of tumour cells. Letters in Applied Microbiology, 51(2), 123–130. https://doi.org/10.1111/j.1472-765X.2010.02859.x
Kumar, A., Green, K. M., & Rawat, M. (2024). A comprehensive overview of postbiotics with a special focus on discovery techniques and clinical applications. Foods, 13(18), 2937. https://doi.org/10.3390/foods13182937
Kumar, M. A., Baba, S. K., Sadida, H. Q., Marzooqi, S. A., Jerobin, J., Altemani, F. H., Algehainy, N., Alanazi, M. A., Abou-Samra, A.-B., & Kumar, R. (2024). Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduction and Targeted Therapy, 9(1), 27. https://doi.org/10.1038/s41392-024-01735-1
Lebeer, S., Claes, I. J., & Vanderleyden, J. (2012). Anti-inflammatory potential of probiotics: lipoteichoic acid makes a difference. Trends in Microbiology, 20(1), 5–10. https://doi.org/10.1016/j.tim.2011.09.004
LeBlanc, J., Laiño, J. E., Del Valle, M. J., Vannini, V., van Sinderen, D., Taranto, M. P., de Valdez, G. F., de Giori, G. S., & Sesma, F. (2011). B‐group vitamin production by lactic acid bacteria–current knowledge and potential applications. Journal of Applied Microbiology, 111(6), 1297–1309. https://doi.org/10.1111/j.1365-2672.2011.05157.x
LeBlanc, J. G., Laiño, J. E., del Valle, M. J., de Giori, G. S., Sesma, F., & Taranto, M. P. (2015). B‐group vitamins production by probiotic lactic acid bacteria, Biotechnology of lactic acid bacteria: Novel applications (pp. 279–296). Wiley-Blackwell. https://doi.org/10.1002/9781118868386.ch17
LeBlanc, J. G., Levit, R., Savoy de Giori, G., & de Moreno de LeBlanc, A. (2020). Application of vitamin-producing lactic acid bacteria to treat intestinal inflammatory diseases. Applied Microbiology and Biotechnology, 104, 3331–3337. https://doi.org/10.1007/s00253-020-10487-1
LeBlanc, J. G., Milani, C., De Giori, G. S., Sesma, F., Van Sinderen, D., & Ventura, M. (2013). Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Current Opinion in Biotechnology, 24(2), 160–168. https://doi.org/10.1016/j.copbio.2012.08.005
Lee, H. B., Bang, W. Y., Shin, G. R., Jeon, H. J., Jung, Y. H., & Yang, J. (2023). Isolation, characterization, and safety evaluation of the novel probiotic strain Lacticaseibacillus paracasei IDCC 3401 via genomic and phenotypic approaches. Microorganisms, 12(1), 85. https://doi.org/10.3390/microorganisms12010085
Liang, D., Wu, F., Zhou, D., Tan, B., & Chen, T. (2024). Commercial probiotic products in public health: Current status and potential limitations. Critical Reviews in Food Science and Nutrition, 64(19), 6455–6476. https://doi.org/10.1080/10408398.2023.2169858
Liang, X., Dai, N., Sheng, K., Lu, H., Wang, J., Chen, L., & Wang, Y. (2022). Gut bacterial extracellular vesicles: Important players in regulating intestinal microenvironment. Gut Microbes, 14(1), 2134689. https://doi.org/10.1080/19490976.2022.2134689
Liu, B., Fu, N., Woo, M. W., & Chen, X. D. (2018). Heat stability of Lactobacillus rhamnosus GG and its cellular membrane during droplet drying and heat treatment. Food Research International, 112, 56–65. https://doi.org/10.1016/j.foodres.2018.06.006
Liu, G., Shu, G., Wang, J., Wang, Z., Liu, Y., Li, Y., & Chen, L. (2023). Purification and identification of EPS produced by five lactic acid bacteria and evaluation of their effects on the texture of fermented goat milk. Fermentation, 9(6), 527. https://doi.org/10.3390/fermentation9060527
Lu, K., Dong, S., Wu, X., Jin, R., & Chen, H. (2021). Probiotics in cancer. Frontiers in Oncology, 11, 638148. https://doi.org/10.3389/fonc.2021.638148
Ma, L., Tu, H., & Chen, T. (2023). Postbiotics in human health: A narrative review. Nutrients, 15(2), 291. https://doi.org/10.3390/nu15020291
Mafe, A. N., Iruoghene Edo, G., Akpoghelie, P. O., Gaaz, T. S., Yousif, E., Zainulabdeen, K., Isoje, E. F., Igbuku, U. A., Opiti, R. A., & Garba, Y. (2025). Probiotics and food bioactives: Unraveling their impact on gut microbiome, inflammation, and metabolic health. Probiotics and Antimicrobial Proteins. https://doi.org/10.1007/s12602-025-10452-2
Mahmood, A., & Srivastava, R. (2022). Etiology of cancer. In R. Srivastava, & A. Mahmood (Eds.), Understanding cancer (pp. 37–62). Elsevier. https://doi.org/10.1016/B978-0-323-99883-3.00008-1
Malashree, L., Angadi, V., Yadav, K. S., & Prabha, R. (2019). Postbiotics. One step ahead of probiotics. International Journal of Current Microbiology and Applied Sciences, 8(1), 2049–2053. https://doi.org/10.20546/ijcmas.2019.801.214
Malik, D., Narayanasamy, N., Pratyusha, V., Thakur, J., & Sinha, N. (2023). Water-soluble vitamins. Textbook of nutritional biochemistry (pp. 291–389). Springer. https://doi.org/10.1007/978-981-19-4150-4_10
Martens, J.-H., Barg, H., Warren, M. a., & Jahn, D. (2002). Microbial production of vitamin B12. Applied Microbiology and Biotechnology, 58(3), 275–285. https://doi.org/10.1007/s00253-001-0902-7
Masuda, M., Ide, M., Utsumi, H., Niiro, T., Shimamura, Y., & Murata, M. (2012). Production potency of folate, vitamin B12, and thiamine by lactic acid bacteria isolated from Japanese pickles. Bioscience, Biotechnology, and Biochemistry, 76(11), 2061–2067. https://doi.org/10.1271/bbb.120414
Mgomi, F. C., Yang, Y.-r., Cheng, G., & Yang, Z.-q. (2023). Lactic acid bacteria biofilms and their antimicrobial potential against pathogenic microorganisms. Biofilm, 5, 100118. https://doi.org/10.1016/j.bioflm.2023.100118
Mishra, B., Mishra, A. K., Mohanta, Y. K., Yadavalli, R., Agrawal, D. C., Reddy, H. P., Gorrepati, R., Reddy, C. N., Mandal, S. K., & Shamim, M. Z. (2024). Postbiotics: The new horizons of microbial functional bioactive compounds in food preservation and security. Food Production, Processing and Nutrition, 6(1), 28. https://doi.org/10.1186/s43014-023-00200-w
Morita, Y., Jounai, K., Miyake, M., Inaba, M., & Kanauchi, O. (2018). Effect of heat-killed Lactobacillus paracasei KW3110 ingestion on ocular disorders caused by visual display terminal (VDT) loads: A randomized, double-blind, placebo-controlled parallel-group study. Nutrients, 10(8), 1058. https://doi.org/10.3390/nu10081058
Nataraj, B. H., Ali, S. A., Behare, P. V., & Yadav, H. (2020). Postbiotics-parabiotics: The new horizons in microbial biotherapy and functional foods. Microbial Cell Factories, 19, 1–22. https://doi.org/10.1186/s12934-020-01426-w
Negash, A. W., & Tsehai, B. A. (2020). Current applications of bacteriocin. International Journal of Microbiology, 2020, 4374891. https://doi.org/10.1155/2020/4374891
Nguyen, M.-T., Matsuo, M., Niemann, S., Herrmann, M., & Götz, F. (2020). Lipoproteins in Gram-positive bacteria: Abundance, function, fitness. Frontiers in Microbiology, 11, 582582. https://doi.org/10.3389/fmicb.2020.582582
Nicolescu, C. M., Bumbac, M., Buruleanu, C. L., Popescu, E. C., Stanescu, S. G., Georgescu, A. A., & Toma, S. M. (2023). Biopolymers produced by lactic acid Bacteria: Characterization and food application. Polymers, 15(6), 1539. https://doi.org/10.3390/polym15061539
Nowak, A., Zakłos-Szyda, M., Rosicka-Kaczmarek, J., & Motyl, I. (2022). Anticancer potential of post-fermentation media and cell extracts of probiotic strains: An in vitro study. Cancers, 14(7), 1853. https://doi.org/10.3390/cancers14071853
O'callaghan, A., & Van Sinderen, D. (2016). Bifidobacteria and their role as members of the human gut microbiota. Frontiers in Microbiology, 7, 925. https://doi.org/10.3389/fmicb.2016.00925
Ohland, C. L., & MacNaughton, W. K. (2010). Probiotic bacteria and intestinal epithelial barrier function. American Journal of Physiology-Gastrointestinal and Liver Physiology, 298(6), G807–G819. https://doi.org/10.1152/ajpgi.00243.2009
Ortega, M. A., Alvarez-Mon, M. A., García-Montero, C., Fraile-Martinez, O., Guijarro, L. G., Lahera, G., Monserrat, J., Valls, P., Mora, F., & Rodríguez-Jiménez, R. (2022). Gut microbiota metabolites in major depressive disorder—Deep insights into their pathophysiological role and potential translational applications. Metabolites, 12(1), 50. https://doi.org/10.3390/metabo12010050
Ou, J., Carbonero, F., Zoetendal, E. G., DeLany, J. P., Wang, M., Newton, K., Gaskins, H. R., & O’Keefe, S. J. (2013). Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. The American Journal of Clinical Nutrition, 98(1), 111–120. https://doi.org/10.3945/ajcn.112.056689
Panebianco, C., Villani, A., Pisati, F., Orsenigo, F., Ulaszewska, M., Latiano, T. P., Potenza, A., Andolfo, A., Terracciano, F., & Tripodo, C. (2022). Butyrate, a postbiotic of intestinal bacteria, affects pancreatic cancer and gemcitabine response in in vitro and in vivo models. Biomedicine & Pharmacotherapy, 151, 113163. https://doi.org/10.1016/j.biopha.2022.113163
Patel, R., & DuPont, H. L. (2015). New approaches for bacteriotherapy: Prebiotics, new-generation probiotics, and synbiotics. Clinical Infectious Diseases, 60(Suppl_2), S108–S121. https://doi.org/10.1093/cid/civ177
Patterson, A. D., & Turnbaugh, P. J. (2014). Microbial determinants of biochemical individuality and their impact on toxicology and pharmacology. Cell Metabolism, 20(5), 761–768. https://doi.org/10.1016/j.cmet.2014.07.002
Periti, P., & Mazzei, T. (1998). Antibiotic-induced release of bacterial cell wall components in the pathogenesis of sepsis and septic shock: A review. Journal of Chemotherapy, 10(6), 427–448. https://doi.org/10.1179/joc.1998.10.6.427
Pham, V. T., Dold, S., Rehman, A., Bird, J. K., & Steinert, R. E. (2021). Vitamins, the gut microbiome and gastrointestinal health in humans. Nutrition Research, 95, 35–53. https://doi.org/10.1016/j.nutres.2021.09.001
Prajapati, N., Patel, J., Singh, S., Yadav, V. K., Joshi, C., Patani, A., Prajapati, D., Sahoo, D. K., & Patel, A. (2023). Postbiotic production: Harnessing the power of microbial metabolites for health applications. Frontiers in Microbiology, 14, 1306192. https://doi.org/10.3389/fmicb.2023.1306192
Qin, D., Ma, Y., Wang, Y., Hou, X., & Yu, L. (2022). Contribution of lactobacilli on intestinal mucosal barrier and diseases: Perspectives and challenges of Lactobacillus casei. Life, 12(11), 1910. https://doi.org/10.3390/life12111910
Rad, A. H., Maleki, L. A., Kafil, H. S., Zavoshti, H. F., & Abbasi, A. (2020). Postbiotics as promising tools for cancer adjuvant therapy. Advanced Pharmaceutical Bulletin, 11(1). https://doi.org/10.34172/apb.2021.007
Rafter, J. (2003). Probiotics and colon cancer. Best Practice & Research Clinical Gastroenterology, 17(5), 849–859. https://doi.org/10.1016/s1521-6918(03)00056-8
Raj, T., Chandrasekhar, K., Kumar, A. N., & Kim, S.-H. (2022). Recent biotechnological trends in lactic acid bacterial fermentation for food processing industries. Systems Microbiology and Biomanufacturing, 2(1), 14–40. https://doi.org/10.1007/s43393-021-00044-w
Rao, S. S., Sounderrajan, V., Thangam, T., & Parthasarathy, K. (2023). Analysis and identification of postbiotic enzymes. Postbiotics (pp. 157–163). Springer. https://doi.org/10.1007/978-1-0716-3421-9_22
Rauch, C. E., Mika, A. S., McCubbin, A. J., Huschtscha, Z., & Costa, R. J. (2022). Effect of prebiotics, probiotics, and synbiotics on gastrointestinal outcomes in healthy adults and active adults at rest and in response to exercise—A systematic literature review. Frontiers in Nutrition, 9, 1003620. https://doi.org/10.3389/fnut.2022.1003620
Sabahi, S., Homayouni Rad, A., Aghebati-Maleki, L., Sangtarash, N., Ozma, M. A., Karimi, A., Hosseini, H., & Abbasi, A. (2023). Postbiotics as the new frontier in food and pharmaceutical research. Critical Reviews in Food Science and Nutrition, 63(26), 8375–8402. https://doi.org/10.1080/10408398.2022.2056727
Salminen, S., Collado, M. C., Endo, A., Hill, C., Lebeer, S., Quigley, E. M., Sanders, M. E., Shamir, R., Swann, J. R., & Szajewska, H. (2021). The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature Reviews Gastroenterology & Hepatology, 18(9), 649–667. https://doi.org/10.1038/s41575-021-00440-6
Sanders, M. E., Akkermans, L. M., Haller, D., Hammerman, C., Heimbach, J. T., Hörmannsperger, G., & Huys, G. (2010). Safety assessment of probiotics for human use. Gut Microbes, 1(3), 164–185. https://doi.org/10.4161/gmic.1.3.12127
Scarpellini, E., Rinninella, E., Basilico, M., Colomier, E., Rasetti, C., Larussa, T., Santori, P., & Abenavoli, L. (2021). From pre- and probiotics to post-biotics: A narrative review. International Journal of Environmental Research and Public Health, 19(1), 37. https://doi.org/10.3390/ijerph19010037
Sharma, V., Harjai, K., & Shukla, G. (2018). Effect of bacteriocin and exopolysaccharides isolated from probiotic on P. aeruginosa PAO1 biofilm. Folia Microbiologica, 63(2), 181–190. https://doi.org/10.1007/s12223-017-0545-4
Singh, T. P., Kaur, G., Kapila, S., & Malik, R. K. (2017). Antagonistic activity of Lactobacillus reuteri strains on the adhesion characteristics of selected pathogens. Frontiers in Microbiology, 8, 486. https://doi.org/10.3389/fmicb.2017.00486
Sivan, A., Corrales, L., Hubert, N., Williams, J. B., Aquino-Michaels, K., Earley, Z. M., Benyamin, F. W., Man Lei, Y., Jabri, B., & Alegre, M.-L. (2015). Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science, 350(6264), 1084–1089. https://doi.org/10.1126/science.aac4255
Song, D., Wang, X., Ma, Y., Liu, N.-N., & Wang, H. (2023). Beneficial insights into postbiotics against colorectal cancer. Frontiers in Nutrition, 10, 1111872. https://doi.org/10.3389/fnut.2023.1111872
Sreeja, V., & Prajapati, J. B. (2013). Probiotic formulations: Application and status as pharmaceuticals—A review. Probiotics and Antimicrobial Proteins, 5(2), 81–91. https://doi.org/10.1007/s12602-013-9126-2
Sriharikrishnaa, S., Suresh, P. S., & Prasada K, S. (2023). An introduction to fundamentals of cancer biology. Optical polarimetric modalities for biomedical research (pp. 307–330). Springer. https://doi.org/10.1007/978-3-031-31852-8_11
Sudaarsan, A. S. K., & Ghosh, A. R. (2024). Appraisal of postbiotics in cancer therapy. Frontiers in Pharmacology, 15, 1436021. https://doi.org/10.3389/fphar.2024.1436021
Sybesma, W., Starrenburg, M., Kleerebezem, M., Mierau, I., de Vos, W. M., & Hugenholtz, J. (2003). Increased production of folate by metabolic engineering of Lactococcus lactis. Applied and Environmental Microbiology, 69(6), 3069–3076. https://doi.org/10.1128/AEM.69.6.3069-3076.2003
Teleanu, R. I., Niculescu, A.-G., Roza, E., Vladâcenco, O., Grumezescu, A. M., & Teleanu, D. M. (2022). Neurotransmitters—key factors in neurological and neurodegenerative disorders of the central nervous system. International Journal of Molecular Sciences, 23(11), 5954. https://doi.org/10.3390/ijms23115954
Thorakkattu, P., Khanashyam, A. C., Shah, K., Babu, K. S., Mundanat, A. S., Deliephan, A., Deokar, G. S., Santivarangkna, C., & Nirmal, N. P. (2022). Postbiotics: Current trends in food and pharmaceutical industry. Foods, 11(19), 3094. https://doi.org/10.3390/foods11193094
Tong, Y., Guo, H. n., Abbas, Z., Zhang, J., Wang, J., Cheng, Q., Peng, S., Yang, T., Bai, T., & Zhou, Y. (2023). Optimizing postbiotic production through solid-state fermentation with Bacillus amyloliquefaciens J and Lactiplantibacillus plantarum SN4 enhances antibacterial, antioxidant, and anti-inflammatory activities. Frontiers in Microbiology, 14, 1229952. https://doi.org/10.3389/fmicb.2023.1229952
Tsilingiri, K., & Rescigno, M. (2013). Postbiotics: What else? Beneficial Microbes, 4(1), 101–107. https://doi.org/10.3920/bm2012.0046
Vinderola, G., Sanders, M. E., & Salminen, S. (2022). The concept of postbiotics. Foods, 11(8), 1077. https://doi.org/10.3390/foods11081077
Vinderola, G., Sanders, M. E., Salminen, S., & Szajewska, H. (2022). Postbiotics: The concept and their use in healthy populations. Frontiers in Nutrition, 9, 1002213. https://doi.org/10.3389/fnut.2022.1002213
Wang, K., Niu, M., Song, D., Song, X., Zhao, J., Wu, Y., Lu, B., & Niu, G. (2020). Preparation, partial characterization and biological activity of exopolysaccharides produced from Lactobacillus fermentum S1. Journal of Bioscience and Bioengineering, 129(2), 206–214. https://doi.org/10.1016/j.jbiosc.2019.07.009
Wang, L., Tian, H., Liu, W., Zheng, H., Wu, H., Guan, Y., Lu, Q., & Lv, Z. (2023). Effects of EPS-producing Leuconostoc mesenteroides XR1 on texture, rheological properties, microstructure and volatile flavor of fermented milk. Food Bioscience, 56, 103371. https://doi.org/10.1016/j.fbio.2023.103371
Wang, P., Wang, S., Wang, D., Li, Y., Yip, R. C. S., & Chen, H. (2024). Postbiotics-peptidoglycan, lipoteichoic acid, exopolysaccharides, surface layer protein and pili proteins—Structure, activity in wounds and their delivery systems. International Journal of Biological Macromolecules, 274(1), 133195. https://doi.org/10.1016/j.ijbiomac.2024.133195
Wang, Y., Qin, S., Jia, J., Huang, L., Li, F., Jin, F., Ren, Z., & Wang, Y. (2019). Intestinal microbiota-associated metabolites: Crucial factors in the effectiveness of herbal medicines and diet therapies. Frontiers in Physiology, 10, 1343. https://doi.org/10.3389/fphys.2019.01343
Wegh, C. A., Geerlings, S. Y., Knol, J., Roeselers, G., & Belzer, C. (2019). Postbiotics and their potential applications in early life nutrition and beyond. International Journal of Molecular Sciences, 20(19), 4673. https://doi.org/10.3390/ijms20194673
Woof, J. M., & Mestecky, J. (2015). Mucosal immunoglobulins, Mucosal immunology (pp. 287-324). Academic Press. https://doi.org/10.1111/j.0105-2896.2005.00290.x
Xu, R., Aruhan, Xiu, L., Sheng, S., Liang, Y., Zhang, H., ... & Wang, X. (2019). Exopolysaccharides from Lactobacillus buchneri TCP016 attenuate LPS-and d-GalN-induced liver injury by modulating the gut microbiota. Journal of Agricultural and Food Chemistry, 67(42), 11627–11637. https://doi.org/10.1021/acs.jafc.9b04323
Yang, S.-C., Lin, C.-H., Sung, C. T., & Fang, J.-Y. (2014). Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Frontiers in Microbiology, 5, 241. https://doi.org/10.3389/fmicb.2014.00241
Yoon, Y. J., Kim, O. Y., & Gho, Y. S. (2014). Extracellular vesicles as emerging intercellular communicasomes. BMB Reports, 47(10), 531–539. https://doi.org/10.5483/bmbrep.2014.47.10.164
Zapaśnik, A., Sokołowska, B., & Bryła, M. (2022). Role of lactic acid bacteria in food preservation and safety. Foods, 11(9), 1283. https://doi.org/10.3390/foods11091283
Zhang, J., Xiao, Y., Wang, H., Zhang, H., Chen, W., & Lu, W. (2023). Lactic acid bacteria-derived exopolysaccharide: Formation, immunomodulatory ability, health effects, and structure-function relationship. Microbiological Research, 274, 127432. https://doi.org/10.1016/j.micres.2023.127432
Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M., Harris, H. M., Mattarelli, P., ... & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2782–2858. https://doi.org/10.1099/ijsem.0.004107
Zhong, B., Zhao, Y., Gao, L., Yang, G., Gao, Y., Li, F., & Li, S. (2024). Anticancer effects of Weizmannia coagulans MZY531 postbiotics in CT26 colorectal tumor-bearing mice by regulating apoptosis and autophagy. Life, 14(10), 1334. https://doi.org/10.3390/life14101334
Zhou, P., Chen, C., Patil, S., & Dong, S. (2024). Unveiling the therapeutic symphony of probiotics, prebiotics, and postbiotics in gut-immune harmony. Frontiers in Nutrition, 11, 1355542. https://doi.org/10.3389/fnut.2024.1355542
Zimina, M., Babich, O., Prosekov, A., Sukhikh, S., Ivanova, S., Shevchenko, M., & Noskova, S. (2020). Overview of global trends in classification, methods of preparation and application of bacteriocins. Antibiotics, 9(9), 553. https://doi.org/10.3390/antibiotics9090553
Żółkiewicz, J., Marzec, A., Ruszczyński, M., & Feleszko, W. (2020). Postbiotics—A step beyond pre-and probiotics. Nutrients, 12(8), 2189. https://doi.org/10.3390/nu12082189