Microbial Preservation Efficacy of Dacron Swabs: A Study on Freeze-Drying vs. Conventional Drying for Bacterial Viability

Document Type : Short Communication

Authors

Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR, Tehran, Iran

Abstract

In general, microbiological and biotechnological research depend significantly on microbial preservation. Researchers and medical professionals have used swabs to transfer and preserve clinical specimens for many years. Studies have demonstrated that the synthetic fiber Dacron has a high sample release rate, which is essential for the effectiveness of bacteriological and molecular tests, including the collection of bacterial samples. This study evaluated the recovery of five commonly referenced bacteria: Lacticaseibacillus casei IBRC-M 10711, Bacillus subtilis subsp. subtilis IBRC-M 10997, Salmonella enterica subsp. enterica IBRC-M 10707, Staphylococcus aureus subsp. aureus IBRC-M 10917, and Streptococcus mutans IBRC-M 10682 after preservation on Dacron swabs using standard microbiological assays. The ability of Dacron swabs to retain viable bacteria following two drying methods, freeze-drying and conventional drying methods, and the bacteria recovery was monitored for one year. The results showed that all five bacteria maintained their viability for three months by freeze-drying and conventional drying methods, with no discernible differences between them according to comparing viability percentage. Among tested bacteria, only B. subtilis and L. casei were effectively recovered from the Dacron swabs maintained at 4 °C after one year. B. subtilis was recovered after one year when preserved by both drying methods. In contrast, L. casei sustained viability only with the freeze-drying process. So, for medium-term bacterial preservation (up to three months), conventional drying methods are a cost-effective and straightforward approach for preserving bacteria on Dacron swabs; however, for long-term preservation, one-year results indicate that the type of strain may have a major impact on how effectively bacteria can be preserved using this method.  Therefore, more strains must be assessed before an ultimate decision on the method's suitability for long-term preservation can be made.

Keywords

Main Subjects


Ball, C., Felice, V., Ding, Y., Forrester, A., Catelli, E., & Ganapathy, K. (2020). Influences of swab types and storage temperatures on isolation and molecular detection of Mycoplasma gallisepticum and Mycoplasma synoviae. Avian Pathology, 49(1), 106-110. https://doi.org/10.1080/03079457.2019.1675865
Celik, O., & O’Sullivan, D. (2013). Factors influencing the stability of freeze-dried stress-resilient and stress-sensitive strains of bifidobacteria. Journal of dairy science, 96(6), 3506-3516. https://doi.org/10.3168/jds.2012-6327
Criste, A., Giuburuncă, M., Negrea, O., Dan, S., & Zăhan, M. (2014). Research concerning use of long-term preservation techniques for microorganisms. Scientific Papers Animal Science and Biotechnologies, 47(2), 73-73.
DeMarco, A. L., Rabe, L. K., Austin, M. N., Stoner, K. A., Avolia, H. A., Meyn, L. A., & Hillier, S. L. (2017). Survival of vaginal microorganisms in three commercially available transport systems. Anaerobe, 45, 44-49. https://doi.org/10.1016/j.anaerobe.2017.02.019
Farfan Pajuelo, D. G., Carpio Mamani, M., Maraza Choque, G. J., Chachaque Callo, D. M., & Cáceda Quiroz, C. J. (2023). Effect of lyoprotective agents on the preservation of survival of a Bacillus cereus strain PBG in the freeze-drying process. Microorganisms, 11(11), 2705. https://doi.org/10.3390/microorganisms11112705
Heckly, R. J. (1978). Preservation of microorganisms. Advances in applied microbiology, 24, 1-53. https://doi.org/10.1016/S0065-2164(08)70635-X
Iino, T., & Suzuki, K.-i. (2006). Improvement of the L-drying procedure to keep anaerobic conditions for long-term preservation of methanogens in a culture collection. Microbio Cult Coll, 22, 99-104.
Jalali, M., Abedi, D., Varshosaz, J., Najjarzadeh, M., Mirlohi, M., & Tavakoli, N. (2012). Stability evaluation of freeze-dried Lactobacillus paracasei subsp. tolerance and Lactobacillus delbrueckii subsp. bulgaricus in oral capsules. Research in pharmaceutical sciences, 7(1), 31.
Jansson, L., Akel, Y., Eriksson, R., Lavander, M., & Hedman, J. (2020). Impact of swab material on microbial surface sampling. Journal of Microbiological Methods, 176, 106006. https://doi.org/10.1016/j.mimet.2020.106006
Kumar, T., Bryant, M., Cantrell, K., Song, S. J., McDonald, D., Tubb, H. M., Farmer, S., Lewis, A., Lukacz, E. S., & Brubaker, L. (2024). Effects of variation in sample storage conditions and swab order on 16S vaginal microbiome analyses. Microbiology Spectrum, 12(1), e03712-03723. https://doi.org/10.1128/spectrum.03712-23
Li, C., Zhao, K., Ma, L., Zhao, J., & Zhao, Z.-M. (2022). Effects of drying strategies on sporulation and titer of microbial ecological agents with Bacillus subtilis. Frontiers in Nutrition, 9, 1025248. https://doi.org/10.3389/fnut.2022.1025248
Martin, R., Mullin, K. E., White, N. F. D., Grimason, N., Jehle, R., Wilkinson, J. W., ... & Maddock, S. T. (2024). Optimising recovery of DNA from minimally invasive sampling methods: Efficacy of buccal swabs, preservation strategy and DNA extraction approaches for amphibian studies. Ecology and Evolution14(9), e70294. https://doi.org/10.1002/ece3.70294
Prakash, O., Nimonkar, Y., & Desai, D. (2020). A recent overview of microbes and microbiome preservation. Indian Journal of Microbiology, 60(3), 297-309. DOI:10.1007/s12088-020-00880-9
Sciuto, S., Colussi, S., Esposito, G., Meletiadis, A., Prearo, M., Pizzul, E., Acutis, P. L., Gozlan, R. E., & Pastorino, P. (2024). Buccal swabs for long-term DNA storage in conservation genetics of fish: One-and-a-half-year analysis timeframe. Global Ecology and Conservation, 51, e02867. https://doi.org/10.1016/j.gecco.2024.e02867
Tedeschi, R., & De Paoli, P. (2010). Collection and preservation of frozen microorganisms. In Methods in biobanking (pp. 313-326). Totowa, NJ: Humana Press. https://doi.org/10.1007/978-1-59745-423-0_18
Villa, L., Torreblanca, A., Otero, L., Carreño, F., Campo, R., López-Escobar, M., & Vazquez, F. (2020). Long term storage of fastidious bacteria (Neisseria spp. and Haemophilus spp.) with swab preservation at− 80° C. Journal of Microbiological Methods, 175, 105969. https://doi.org/10.1016/j.mimet.2020.105969
Vitorino, L. C., & Bessa, L. A. (2017). Technological microbiology: development and applications. Frontiers in microbiology, 8, 827.  https://doi.org/10.3389/fmicb.2017.00827