Aharwal, R. P., Kumar, S., & Sandhu, S. S. (2016). Endophytic microflora as a source of biotherapeutic compounds for disease treatment.
Journal of Applied Pharmaceutical Science, 6(1), 242–249.
https://doi.org/10.7324/JAPS.2016.601034
Ahmadi, M., Rad, A. K., Rajaei, Z., Mohammadian, N., & Tabasi, N. S. (2012).
Alcea rosea root extract as a preventive and curative agent in ethylene glycol-induced urolithiasis in rats.
Indian Journal of Pharmacology, 44(3), 304–309.
https://doi.org/10.4103/0253-7613.96298
Ayuso, A., Clark, D., González, I., Salazar, O., Anderson, A., & Genilloud, O. (2005). A novel actinomycete strain de-replication approach based on the diversity of polyketide synthase and nonribosomal peptide synthetase biosynthetic pathways.
Applied Microbiology and Biotechnology, 67(6), 795–804.
https://doi.org/10.1007/s00253-004-1828-7
Ayuso-Sacido, A., & Genilloud, O. (2005). New PCR primers for the screening of NRPS and PKS-I systems in Actinomycetes: Detection and distribution of these biosynthetic gene sequences in major taxonomic groups.
Microbial Ecology, 49(1), 10–21.
https://doi.org/10.1007/s00248-004-0249-6
Azadeh, Z., Asgharian, S., Habtemariam, S., Lorigooini, Z., & Taheri, A. A. (2023). Review of botanical, phytochemical, and pharmacological properties of
Alcea rosea L.
Future Natural Products, 9(2), 88–101.
https://doi.org/10.34172/fnp.2210-1232
Bredholt, H., Fjærvik, E., Johnsen, G., & Zotchev, S. B. (2008). Actinomycetes from sediments in the Trondheim fjord, Norway: Diversity and biological activity.
Marine Drugs, 6(1), 12–22.
https://doi.org/10.3390/MD6010012
Butz, D., Schmiederer, T., Hadatsch, B., Wohlleben, W., Weber, T., & Süssmuth, R. D. (2008). Mode extension of a non-ribosomal peptide synthetase of the glycopeptide antibiotic balhimycin produced by
Amycolatopsis balhimycina.
ChemBioChem, 9(8), 1195–1200.
https://doi.org/10.1002/cbic.200800068
Choudhury, S., Baksi, S., Bandyopadhyay, B., & Roy, D. (2023). Assessment of phytochemicals, antioxidant activity, and enzyme production of endophytic fungi isolated from medicinal plant sources.
Journal of Advanced Zoology, 44(1), 1–12.
https://doi.org/10.17762/jaz.v44is6.2580
Cook, A. E. (2003). Rapid identification of filamentous Actinomycetes to the genus level using genus-specific 16S rRNA gene restriction fragment patterns.
International Journal of Systematic and Evolutionary Microbiology, 53(6), 1907–1915.
https://doi.org/10.1099/ijs.0.02680-0
Dar, P. A., Ali, F., Sheikh, I. A., Ganie, S. A., & Dar, T. A. (2017). Amelioration of hyperglycaemia and modulation of antioxidant status by
Alcea rosea seeds in alloxan-induced diabetic rats.
Pharmaceutical Biology, 55(10), 1849–1856.
https://doi.org/10.1080/13880209.2017.1333127
Gohain, A., Gogoi, A., Debnath, R., Yadav, A., Singh, B. P., Gupta, V. K., & Saikia, R. (2015). Antimicrobial biosynthetic potential and genetic diversity of endophytic Actinomycetes associated with medicinal plants.
FEMS Microbiology Letters, 362(19), fnv158.
https://doi.org/10.1093/femsle/fnv158
Hajizadeh, M., Pourahmad, F., & Nemati, M. (2023). Isolation and screening of antibacterial activity of Actinomycetota from the medicinal plant,
Anthemis pseudocotula Boiss.
Archives of Razi Institute, 78(5), 1638.
https://doi.org/10.22092/ARI.2023.78.5.1638
Hanh, T., Huy Nguyen, Q., My, T., Tung Quach, N., Nhan Khieu, T., Hoang, H., & Phi, Q.-T. (2020). Endophytic Actinomycetes associated with
Cinnamomum cassia Presl in Hoa Binh province, Vietnam: Distribution, antimicrobial activity and genetic features.
Journal of General and Applied Microbiology, 66(1), 24–31.
https://doi.org/10.2323/jgam.2019.04.004
Hanif, M., Mehmood, M. H., Ishrat, G., Virji, S. N., Malik, A., Ahmed, M., & Gilani, A. H. (2019). Pharmacological basis for the medicinal use of
Alcea rosea in airways disorders and chemical characterization of its fixed oils through GC-MS.
Pakistan Journal of Pharmaceutical Sciences, 32(5), 2347-2354.
https://pubmed.ncbi.nlm.nih.gov/31894065/
Hur, G., Jeon, J. H., & Lee, J. (2012). Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology.
Natural Product Reports, 29(9), 1074–1087.
https://doi.org/10.1039/c2np20025b
Izhar, S. K., Rizvi, S. F., Afaq, U., Fatima, F., & Siddiqui, S. (2024). Bioprospecting of metabolites from Actinomycetes and their applications.
Recent Patents on Biotechnology, 18(4), 273-287.
https://doi.org/10.2174/0118722083269904231114154017
Jagannathan, S. V., Manemann, E. M., Rowe, S. E., Callender, M. C., & Soto, W. (2021). Marine Actinomycetes, new sources of biotechnological products.
Marine Drugs, 19(7), 365.
https://doi.org/10.3390/md19070365
Janso, J. E., & Carter, G. T. (2010). Biosynthetic potential of phylogenetically unique endophytic Actinomycetes from tropical plants.
Applied and Environmental Microbiology, 76(13), 4377–4386.
https://doi.org/10.1128/aem.02959-09
Javed, Z., Tripathi, G. D., Mishra, M., & Dashora, K. (2021). Actinomycetes—the microbial machinery for the organic-cycling, plant growth, and sustainable soil health.
Biocatalysis and Agricultural Biotechnology, 31, 101893.
https://doi.org/10.1016/j.bcab.2020.101893
Jensen, P. R., Dwight, R. Y. A. N., & Fenical, W. I. L. L. I. A. M. (1991). Distribution of Actinomycetes in near-shore tropical marine sediments.
Applied and Environmental Microbiology, 57(4), 1102–1108.
https://doi.org/10.1128/aem.57.4.1102-1108.1991
Khan, M., Shah, S. H., Hayat, F., & Akbar, S. (2023). Endophytic microbial community and its potential applications: A review.
BioScientific Review, 5(3), 82.
https://doi.org/10.32350/bsr.53.08
Khan, S., Gul, A., Jehan, S., Khan, Z., Saeed, J., Shirazi, R. R., & Ullah, H. (2023). Biodiversity of Actinomycetes and their secondary metabolites: A comprehensive review.
Journal of Advanced Biomedical and Pharmaceutical Sciences, 6, 36–50.
https://doi.org/10.21608/jabps.2022.161607.1165
Kim, J. H., Lee, N., Hwang, S., Kim, W., Lee, Y., Cho, S., & Cho, B. K. (2021). Discovery of novel secondary metabolites encoded in actinomycete genomes through coculture.
Journal of Industrial Microbiology and Biotechnology, 48(1), 1–11.
https://doi.org/10.1093/jimb/kuaa001
Li, G., Kusari, S., Lamshöft, M., Schüffler, A., Laatsch, H., & Spiteller, M. (2014). Antibacterial secondary metabolites from an endophytic fungus,
Eupenicillium sp. LG41.
Journal of Natural Products, 77(10), 2335–2340.
https://doi.org/10.1021/np500111w
Mazumdar, R., Dutta, P. P., Saikia, J., Borah, J. C., & Thakur, D. (2023).
Streptomyces sp. strain PBR11, a forest-derived soil Actinomycetia with antimicrobial potential.
Microbiology Spectrum, 11(2), e03489.
https://doi.org/10.1128/spectrum.03489-22
Meenakshi, S., Hiremath, J., Meenakshi, M. H., & Shivaveerakumar, S. (2024). Actinomycetes: Isolation, cultivation, and its active biomolecules.
Journal of Pure and Applied Microbiology, 18(1), 1–8.
https://doi.org/10.22207/jpam.18.1.48
Metsä-Ketelä, M., Salo, V., Halo, L., Hautala, A., Hakala, J., Mäntsälä, P., & Ylihonko, K. (1999). An efficient approach for screening minimal PKS genes from
Streptomyces.
FEMS Microbiology Letters, 180(1), 1–6.
https://doi.org/10.1111/j.1574-6968.1999.tb08770.x
Qin, S., Xing, K., Jiang, J. H., Xu, L. H., & Li, W. J. (2011). Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria.
Applied Microbiology and Biotechnology, 89(2), 457–472.
https://doi.org/10.1007/s00253-010-2923-6
Roy, S., & Banerjee, D. (2015). Bioactive endophytic Actinomycetes of
Cinnamomum sp.; Isolation, identification, activity-guided purification, and process optimization of active metabolite.
American Journal of Microbiology, 6(4), 4–13.
https://doi.org/10.3844/ajmsp.2015.4.13
Shan, W., Zhou, Y., Liu, H., & Yu, X. (2018). Endophytic Actinomycetes from Tea Plants (
Camellia sinensis): Isolation, abundance, antimicrobial, and plant-growth-promoting activities.
BioMed Research International, 2018, 1–12.
https://doi.org/10.1155/2018/1470305
Stach, J. E., Maldonado, L. A., Ward, A. C., Goodfellow, M., & Bull, A. T. (2003). New primers for the class Actinobacteria: Application to marine and terrestrial environments.
Environmental Microbiology, 5(9), 828–833.
https://doi.org/10.1046/j.1462-2920.2003.00483.x
Staniek, A., Woerdenbag, H. J., & Kayser, O. (2008). Endophytes: Exploiting biodiversity for the improvement of natural product-based drug discovery.
Journal of Plant Interactions, 3(2), 75-87.
https://doi.org/10.1080/17429140801886293
Tavarideh, F., Pourahmad, F., & Nemati, M. (2022). Diversity and antibacterial activity of endophytic bacteria associated with medicinal plant,
Scrophularia striata.
Veterinary Research Forum, 13(4), 409–417.
https://doi.org/10.30466/vrf.2021.529714.3174
Van der Meij, A., Worsley, S. F., Hutchings, M. I., & van Wezel, G. P. (2017). Chemical ecology of antibiotic production by Actinomycetes.
FEMS Microbiology Reviews, 41(3), 392–404.
https://doi.org/10.1093/femsre/fux005
Wati, C., Dewi, R. S., & Subandiyah, S. (2023). Diversity of phyllosphere Actinomycetes in Liliaceae plants and their potential as growth inhibitors of
Alternaria porri.
Biodiversitas, 24(1), 1–10.
https://doi.org/10.13057/biodiv/d241003
Zareii, B., Seyfi, T., Movahedi, R., Cheraghi, J., & Ebrahimi, S. (2014). Antibacterial effects of plant extracts of
Alcea digitata L.,
Satureja bachtiarica L., and
Ferulago angulata L.
Journal of Babol University of Medical Sciences, 16(1), 31–36.
http://jbums.org/article-1-4607-en.html
Zhao, J., Shan, T., Mou, Y., Zhou, L., & Zhao, K. (2011). Plant-derived bioactive compounds produced by endophytic fungi.
Mini Reviews in Medicinal Chemistry, 11(2), 159–171.
https://doi.org/10.2174/138955711794519492
Zhao, K., Penttinen, P., Guan, T., Xiao, J., Chen, Q., Xu, J., & Strobel, G. A. (2011). The diversity and antimicrobial activity of endophytic Actinomycetes isolated from medicinal plants in Panxi plateau, China.
Current Microbiology, 62(2), 182–190.
https://doi.org/10.1007/s00284-010-9685-3
Zobel, S., Boecker, S., Kulke, D., Heimbach, D., Meyer, V., & Süssmuth, R. D. (2016). Reprogramming the biosynthesis of cyclodepsipeptide synthetases to obtain new enniatins and beauvericins.
ChemBioChem, 17(3), 283–290.
https://doi.org/10.1002/cbic.201500649