Isolation and Screening of Antibacterial-Producing Endophytic Actinomycetes from Hollyhock (Alcea rosea)

Document Type : Research Paper

Authors

Department of Microbiology, Faculty of Veterinary Sciences, Ilam University, Ilam, Iran

Abstract

Actinomycete bacteria are widely recognized for their ability to produce a diverse array of bioactive compounds, particularly antibiotics, and contribute significantly to the discovery of naturally derived antimicrobial agents. This study focused on the isolation and characterization of actinomycete strains from hollyhock (Alcea rosea) plant tissues to assess their antibacterial potential against clinically relevant pathogens. The target pathogens included Bacillus cereus, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. A total of 110 bacterial isolates were obtained, with 62 isolates confirmed as Actinomycetes through PCR amplification of the 16S rRNA gene. Approximately 46.5% of these isolates exhibited antibacterial activity, with pronounced effects against B. cereus and S. aureus, suggesting their potential role in combating antibiotic-resistant bacteria. Genetic analysis revealed the presence of non-ribosomal peptide synthetase (NRPS) genes, indicating that the produced antimicrobial compounds may originate from NRPS pathways. However, no polyketide synthase (PKS) genes were detected, which may limit the diversity of bioactive metabolites. These findings highlight the pharmaceutical potential of hollyhock-associated Actinomycetes as promising sources of novel antimicrobial agents.

Keywords

Main Subjects


Aharwal, R. P., Kumar, S., & Sandhu, S. S. (2016). Endophytic microflora as a source of biotherapeutic compounds for disease treatment. Journal of Applied Pharmaceutical Science, 6(1), 242–249. https://doi.org/10.7324/JAPS.2016.601034
Ahmadi, M., Rad, A. K., Rajaei, Z., Mohammadian, N., & Tabasi, N. S. (2012). Alcea rosea root extract as a preventive and curative agent in ethylene glycol-induced urolithiasis in rats. Indian Journal of Pharmacology, 44(3), 304–309. https://doi.org/10.4103/0253-7613.96298
Ayuso, A., Clark, D., González, I., Salazar, O., Anderson, A., & Genilloud, O. (2005). A novel actinomycete strain de-replication approach based on the diversity of polyketide synthase and nonribosomal peptide synthetase biosynthetic pathways. Applied Microbiology and Biotechnology, 67(6), 795–804. https://doi.org/10.1007/s00253-004-1828-7
Ayuso-Sacido, A., & Genilloud, O. (2005). New PCR primers for the screening of NRPS and PKS-I systems in Actinomycetes: Detection and distribution of these biosynthetic gene sequences in major taxonomic groups. Microbial Ecology, 49(1), 10–21. https://doi.org/10.1007/s00248-004-0249-6
Azadeh, Z., Asgharian, S., Habtemariam, S., Lorigooini, Z., & Taheri, A. A. (2023). Review of botanical, phytochemical, and pharmacological properties of Alcea rosea L. Future Natural Products, 9(2), 88–101. https://doi.org/10.34172/fnp.2210-1232
Bredholt, H., Fjærvik, E., Johnsen, G., & Zotchev, S. B. (2008). Actinomycetes from sediments in the Trondheim fjord, Norway: Diversity and biological activity. Marine Drugs, 6(1), 12–22. https://doi.org/10.3390/MD6010012
Butz, D., Schmiederer, T., Hadatsch, B., Wohlleben, W., Weber, T., & Süssmuth, R. D. (2008). Mode extension of a non-ribosomal peptide synthetase of the glycopeptide antibiotic balhimycin produced by Amycolatopsis balhimycina. ChemBioChem, 9(8), 1195–1200. https://doi.org/10.1002/cbic.200800068
Choudhury, S., Baksi, S., Bandyopadhyay, B., & Roy, D. (2023). Assessment of phytochemicals, antioxidant activity, and enzyme production of endophytic fungi isolated from medicinal plant sources. Journal of Advanced Zoology, 44(1), 1–12. https://doi.org/10.17762/jaz.v44is6.2580
Cook, A. E. (2003). Rapid identification of filamentous Actinomycetes to the genus level using genus-specific 16S rRNA gene restriction fragment patterns. International Journal of Systematic and Evolutionary Microbiology, 53(6), 1907–1915. https://doi.org/10.1099/ijs.0.02680-0
Dar, P. A., Ali, F., Sheikh, I. A., Ganie, S. A., & Dar, T. A. (2017). Amelioration of hyperglycaemia and modulation of antioxidant status by Alcea rosea seeds in alloxan-induced diabetic rats. Pharmaceutical Biology, 55(10), 1849–1856. https://doi.org/10.1080/13880209.2017.1333127
Genilloud, O. (2017). Actinomycetes: Still a source of novel antibiotics. Natural Product Reports, 34(11), 1203–1215. https://doi.org/10.1039/C7NP00026J
Gohain, A., Gogoi, A., Debnath, R., Yadav, A., Singh, B. P., Gupta, V. K., & Saikia, R. (2015). Antimicrobial biosynthetic potential and genetic diversity of endophytic Actinomycetes associated with medicinal plants. FEMS Microbiology Letters, 362(19), fnv158. https://doi.org/10.1093/femsle/fnv158
Hajizadeh, M., Pourahmad, F., & Nemati, M. (2023). Isolation and screening of antibacterial activity of Actinomycetota from the medicinal plant, Anthemis pseudocotula Boiss. Archives of Razi Institute, 78(5), 1638. https://doi.org/10.22092/ARI.2023.78.5.1638
Hanh, T., Huy Nguyen, Q., My, T., Tung Quach, N., Nhan Khieu, T., Hoang, H., & Phi, Q.-T. (2020). Endophytic Actinomycetes associated with Cinnamomum cassia Presl in Hoa Binh province, Vietnam: Distribution, antimicrobial activity and genetic features. Journal of General and Applied Microbiology, 66(1), 24–31. https://doi.org/10.2323/jgam.2019.04.004
Hanif, M., Mehmood, M. H., Ishrat, G., Virji, S. N., Malik, A., Ahmed, M., & Gilani, A. H. (2019). Pharmacological basis for the medicinal use of Alcea rosea in airways disorders and chemical characterization of its fixed oils through GC-MS. Pakistan Journal of Pharmaceutical Sciences, 32(5), 2347-2354. https://pubmed.ncbi.nlm.nih.gov/31894065/
Hur, G., Jeon, J. H., & Lee, J. (2012). Explorations of catalytic domains in non-ribosomal peptide synthetase enzymology. Natural Product Reports, 29(9), 1074–1087. https://doi.org/10.1039/c2np20025b
Izhar, S. K., Rizvi, S. F., Afaq, U., Fatima, F., & Siddiqui, S. (2024). Bioprospecting of metabolites from Actinomycetes and their applications. Recent Patents on Biotechnology, 18(4), 273-287. https://doi.org/10.2174/0118722083269904231114154017
Jagannathan, S. V., Manemann, E. M., Rowe, S. E., Callender, M. C., & Soto, W. (2021). Marine Actinomycetes, new sources of biotechnological products. Marine Drugs, 19(7), 365. https://doi.org/10.3390/md19070365
Janso, J. E., & Carter, G. T. (2010). Biosynthetic potential of phylogenetically unique endophytic Actinomycetes from tropical plants. Applied and Environmental Microbiology, 76(13), 4377–4386. https://doi.org/10.1128/aem.02959-09
Javed, Z., Tripathi, G. D., Mishra, M., & Dashora, K. (2021). Actinomycetes—the microbial machinery for the organic-cycling, plant growth, and sustainable soil health. Biocatalysis and Agricultural Biotechnology, 31, 101893. https://doi.org/10.1016/j.bcab.2020.101893
Jensen, P. R., Dwight, R. Y. A. N., & Fenical, W. I. L. L. I. A. M. (1991). Distribution of Actinomycetes in near-shore tropical marine sediments. Applied and Environmental Microbiology, 57(4), 1102–1108. https://doi.org/10.1128/aem.57.4.1102-1108.1991
José, P. A., & Jebakumar, S. R. D. (2014). Unexplored hypersaline habitats are sources of novel Actinomycetes. Frontiers in Microbiology, 5, 242. https://doi.org/10.3389/fmicb.2014.00242
Khan, M., Shah, S. H., Hayat, F., & Akbar, S. (2023). Endophytic microbial community and its potential applications: A review. BioScientific Review, 5(3), 82. https://doi.org/10.32350/bsr.53.08
Khan, S., Gul, A., Jehan, S., Khan, Z., Saeed, J., Shirazi, R. R., & Ullah, H. (2023). Biodiversity of Actinomycetes and their secondary metabolites: A comprehensive review. Journal of Advanced Biomedical and Pharmaceutical Sciences, 6, 36–50. https://doi.org/10.21608/jabps.2022.161607.1165
Kim, J. H., Lee, N., Hwang, S., Kim, W., Lee, Y., Cho, S., & Cho, B. K. (2021). Discovery of novel secondary metabolites encoded in actinomycete genomes through coculture. Journal of Industrial Microbiology and Biotechnology, 48(1), 1–11. https://doi.org/10.1093/jimb/kuaa001
Li, G., Kusari, S., Lamshöft, M., Schüffler, A., Laatsch, H., & Spiteller, M. (2014). Antibacterial secondary metabolites from an endophytic fungus, Eupenicillium sp. LG41. Journal of Natural Products, 77(10), 2335–2340. https://doi.org/10.1021/np500111w
Mazumdar, R., Dutta, P. P., Saikia, J., Borah, J. C., & Thakur, D. (2023). Streptomyces sp. strain PBR11, a forest-derived soil Actinomycetia with antimicrobial potential. Microbiology Spectrum, 11(2), e03489. https://doi.org/10.1128/spectrum.03489-22
Meenakshi, S., Hiremath, J., Meenakshi, M. H., & Shivaveerakumar, S. (2024). Actinomycetes: Isolation, cultivation, and its active biomolecules. Journal of Pure and Applied Microbiology, 18(1), 1–8. https://doi.org/10.22207/jpam.18.1.48
Metsä-Ketelä, M., Salo, V., Halo, L., Hautala, A., Hakala, J., Mäntsälä, P., & Ylihonko, K. (1999). An efficient approach for screening minimal PKS genes from Streptomyces. FEMS Microbiology Letters, 180(1), 1–6. https://doi.org/10.1111/j.1574-6968.1999.tb08770.x
Qin, S., Xing, K., Jiang, J. H., Xu, L. H., & Li, W. J. (2011). Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Applied Microbiology and Biotechnology, 89(2), 457–472. https://doi.org/10.1007/s00253-010-2923-6
Roy, S., & Banerjee, D. (2015). Bioactive endophytic Actinomycetes of Cinnamomum sp.; Isolation, identification, activity-guided purification, and process optimization of active metabolite. American Journal of Microbiology, 6(4), 4–13. https://doi.org/10.3844/ajmsp.2015.4.13
Setiawati, S., & Yusan, R. T. (2022). Actinomycetes as a source of potential antimicrobial and antibiofilm agents. Medical and Health Journal, 1(2), 117–125. https://doi.org/10.20884/1.mhj.2022.1.2.5831
Shan, W., Zhou, Y., Liu, H., & Yu, X. (2018). Endophytic Actinomycetes from Tea Plants (Camellia sinensis): Isolation, abundance, antimicrobial, and plant-growth-promoting activities. BioMed Research International, 2018, 1–12. https://doi.org/10.1155/2018/1470305
Stach, J. E., Maldonado, L. A., Ward, A. C., Goodfellow, M., & Bull, A. T. (2003). New primers for the class Actinobacteria: Application to marine and terrestrial environments. Environmental Microbiology, 5(9), 828–833. https://doi.org/10.1046/j.1462-2920.2003.00483.x
Staniek, A., Woerdenbag, H. J., & Kayser, O. (2008). Endophytes: Exploiting biodiversity for the improvement of natural product-based drug discovery. Journal of Plant Interactions, 3(2), 75-87. https://doi.org/10.1080/17429140801886293
Tavarideh, F., Pourahmad, F., & Nemati, M. (2022). Diversity and antibacterial activity of endophytic bacteria associated with medicinal plant, Scrophularia striata. Veterinary Research Forum, 13(4), 409–417. https://doi.org/10.30466/vrf.2021.529714.3174
Van der Meij, A., Worsley, S. F., Hutchings, M. I., & van Wezel, G. P. (2017). Chemical ecology of antibiotic production by Actinomycetes. FEMS Microbiology Reviews, 41(3), 392–404. https://doi.org/10.1093/femsre/fux005
Wati, C., Dewi, R. S., & Subandiyah, S. (2023). Diversity of phyllosphere Actinomycetes in Liliaceae plants and their potential as growth inhibitors of Alternaria porri. Biodiversitas, 24(1), 1–10. https://doi.org/10.13057/biodiv/d241003
Zareii, B., Seyfi, T., Movahedi, R., Cheraghi, J., & Ebrahimi, S. (2014). Antibacterial effects of plant extracts of Alcea digitata L., Satureja bachtiarica L., and Ferulago angulata L. Journal of Babol University of Medical Sciences, 16(1), 31–36. http://jbums.org/article-1-4607-en.html
Zhao, J., Shan, T., Mou, Y., Zhou, L., & Zhao, K. (2011). Plant-derived bioactive compounds produced by endophytic fungi. Mini Reviews in Medicinal Chemistry, 11(2), 159–171. https://doi.org/10.2174/138955711794519492
Zhao, K., Penttinen, P., Guan, T., Xiao, J., Chen, Q., Xu, J., & Strobel, G. A. (2011). The diversity and antimicrobial activity of endophytic Actinomycetes isolated from medicinal plants in Panxi plateau, China. Current Microbiology, 62(2), 182–190. https://doi.org/10.1007/s00284-010-9685-3
Zhuang, L., & Zhang, H. (2021). Utilizing cross-species co-cultures for discovery of novel natural products. Current Opinion in Biotechnology, 69, 252–259. https://doi.org/10.1016/j.copbio.2021.01.023
Zobel, S., Boecker, S., Kulke, D., Heimbach, D., Meyer, V., & Süssmuth, R. D. (2016). Reprogramming the biosynthesis of cyclodepsipeptide synthetases to obtain new enniatins and beauvericins. ChemBioChem, 17(3), 283–290. https://doi.org/10.1002/cbic.201500649