Awuchi, C. G., Ondari, E. N., Nwozo, S., Odongo, G. A., Eseoghene, I. J., Winomuhwezi, H., Ogbonna, C. U., Upadhyay, A. K., Adeleye, A. O., & Okpala, C. O. R. (2022). Mycotoxins’ toxicological mechanisms involving humans, livestock and their associated health concerns: A review.
Toxins, 14(3), 167.
https://doi.org/10.3390/toxins14030167
Calvo, H., Mendiara, I., Pilar Gracia, A., Venturini, M. E. (2020). Antifungal activity of the volatile organic compounds produced by
Bacillus velezensis strains against postharvest fungal pathogens.
Postharvest Biology and Technology, 166, 111208.
https://doi.org/10.1016/j.postharvbio.2020.111208
Chen, H., Yan, X., Du, G., Guo, Q., Shi, Y., Chang, J., & Yue, T. (2021). Recent developments in antifungal lactic acid bacteria: Application, screening methods, separation, purification of antifungal compounds and antifungal mechanisms.
Critical Reviews in Food Science and Nutrition, 63(15), 2544–2558.
https://doi.org/10.1080/10408398.2021.1977610
Crowley, S., Mahony, J., & Sinderen, D. (2013). Current perspectives on antifungal lactic acid bacteria as natural bio-preservatives.
Trends in Food Science & Technology, 33(2), 93–109.
https://doi.org/10.1016/j.tifs.2013.07.004
Danova, S., Petrov, K., Pavlov, P., & Petrova, P. (2005). Isolation and characterization of
Lactobacillus strains involved in koumiss fermentation.
International Journal of Dairy Technology, 58(2), 100–105.
https://doi.org/10.1111/j.1471-0307.2005.00194.x
Delavenne, E., Ismail, R., Pawtowski, A., Mounier, J., Barbier, G., & Le Blay, G. (2012). Assessment of lactobacilli strains as yogurt bioprotective cultures.
Food Control, 30(1), 206–213.
https://doi.org/10.1016/j.foodcont.2012.06.043
Erfani, A., Shakeri, G., Moghimani, M., & Afshari, A. (2024). Specific species of probiotic bacteria as bio-preservative cultures for control of fungal contamination and spoilage in dairy products.
International Dairy Journal, 151, 105863.
https://doi.org/10.1016/j.idairyj.2023.105863
Godana, E. A., Yang, Q., Zhang, X., Zhao, L., Wang, K., Dhanasekaran, S., & Zhang, H. (2023). Biotechnological and biocontrol approaches for mitigating postharvest diseases caused by fungal pathogens and their mycotoxins in fruits: A review.
Journal of Agricultural and Food Chemistry, 71(46), 17584–17596.
https://doi.org/10.1021/acs.jafc.3c06448
Gouy, M., Guindon, S., & Gascuel, O. (2010). A multiplatform graphical user interface for sequence alignment and phylogenetic tree building.
Molecular Biology and Evolution, 27(2), 221–224.
https://doi.org/10.1093/molbev/msp259
Hossain, T. J. (2024). Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations.
European Journal of Microbiology and Immunology, 14(2), 97–115.
https://doi.org/10.1556/1886.2024.00035
Jyoti, B. D., Suresh, A. K., & Venkatesh, K. V. (2003). Diacetyl production and growth of
Lactobacillus rhamnosus on multiple substrates.
World Journal of Microbiology & Biotechnology, 19(5), 509–514.
https://doi.org/10.1023/A:1025170630905
Kavková, M., Cihlář, J., Dráb, V., & Bár, L. (2021). Differentiation of
Penicillium roqueforti from closely related species contaminating cheeses and dairy environment.
Fermentation, 7(4), 222.
https://doi.org/10.3390/fermentation7040222
Li, Y., Zhao, X., Yao, M., Jia, P., Feng, P., Jin, M., Wang, X., Wang, Y., Zhang, W., Chen, J., & Wen, J. (2023). Mechanism of microbial production of acetoin and 2,3-butanediol optical isomers and substrate specificity of butanediol dehydrogenase.
Microbial Cell Factories, 22(1), 165.
https://doi.org/10.1186/s12934-023-02163-6
Ling, L., Pang, M., Luo, H., Cheng, W., Jiang, K., & Wang, Y. (2023). Antifungal activity of diacetyl, a volatile organic compound, on
Trichoderma lixii F2 isolated from postharvest Lanzhou lily bulbs.
Food Bioscience, 51, 102365.
https://doi.org/10.1016/j.fbio.2023.102365
Lipińska, L., Klewicki, R., Sójka, M., Bonikowski, R., Żyżelewicz, D., Kołodziejczyk, K., & Klewicka, E. (2018). Antifungal activity of
Lactobacillus pentosus ŁOCK 0979 in the presence of polyols and galactosyl-polyols.
Probiotics and Antimicrobial Proteins, 10(1), 186–200.
https://doi.org/10.1007/s12602-017-9344-0
Marcelli, V., Osimanin, A., & Aquilanti, L. (2024). Research progress in the use of lactic acid bacteria as natural biopreservatives against
Pseudomonas spp. in meat and meat products: A review.
Food Research International, 196, 115129.
https://doi.org/10.1016/j.foodres.2024.115129
Morelli, L., Calleagri, M. L., Vogensen, F. K., & Von Wright, A. (2011). Lactic acid bacteria: Microbiological and functional aspects. In S. Salminen, A. von Wright, & A. Ouwehand (Eds.),
Lactic acid bacteria: Microbiological and functional aspects (4th ed., pp. 18-33). CRC Press.
https://doi.org/10.1201/9780429057465
Nielsen, J., & Villadsen, J. (1994). Bioreaction engineering principles. Plenum Press.
Oliveira, P. M., Zannini, E., & Arendt, E. K. (2014). Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: From crop farming to cereal products.
Journal of Food Microbiology, 37, 78–95.
https://doi.org/10.1016/j.fm.2013.06.003
Pawlowska, A. M., Zannini, E., Coffey, A., & Arendt, E. K. (2012). Green preservatives: Combating fungi in the food and feed industry by applying antifungal lactic acid bacteria. In S. Taylor (Ed.),
Advances in food and nutrition research (Vol. 66, pp. 217-238). Academic Press.
https://doi.org/10.1016/b978-0-12-394597-6.00005-7
Raman, J., Kim, J.-S., Choi, K. R., Eun, H., Yang, D., Ko, Y.-J., & Kim, S.-J. (2022). Application of lactic acid bacteria (LAB) in sustainable agriculture: Advantages and limitations.
International Journal of Molecular Sciences, 23(14), 7784.
https://doi.org/10.3390/ijms23147784
Russo, P., Arena, M. P., Fiocco, D., Capozzi, V., Drider, D., & Spano, G. (2016).
Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products.
International Journal of Food Microbiology, 247, 48–54.
https://doi.org/10.1016/j.ijfoodmicro.2016.04.027
Salas, M. L., Thierry, A., Lemaître, M., Garric, G., Harel-Oger, M., Chatel, M., Lê, S., Mounier, J., Valence, F., & Coton, E. (2018). Antifungal activity of lactic acid bacteria combinations in dairy mimicking models and their potential as bioprotective cultures in pilot scale applications.
Frontiers in Microbiology, 9, 1787.
https://doi.org/10.3389/fmicb.2018.01787
Santra, H. K., Dutta, R., & Banerjee, D. (2024). Antifungal activity of bio-active cell-free culture extracts and volatile organic compounds (VOCs) synthesised by endophytic fungal isolates of Garden Nasturtium.
Scientific Reports, 14(1), 11228.
https://doi.org/10.1038/s41598-024-60948-0
Shi, C., & Maktabdar, M. (2022). Lactic acid bacteria as biopreservation against spoilage molds in dairy products - A review.
Frontiers in Microbiology, 12, 819684.
https://doi.org/10.3389/fmicb.2021.819684
Szczerbiec, D., Piechocka, J., Głowacki, R., & Torzewska, A. (2022). Organic acids secreted by
Lactobacillus spp. isolated from urine and their antimicrobial activity against uropathogenic
Proteus mirabilis.
Molecules, 27(17), 5557.
https://doi.org/10.3390/molecules27175557
Temitope, F. P., & Oluchi, U. E. (2015). Studies on the antifungal activity of
Lactobacillus plantarum and
Lactobacillus fermentum on spoilage fungi of tomato fruit.
Journal of Microbiology Research, 5(3), 95–100.
https://doi.org/10.5923/j.microbiology.20150503.03
Tropcheva, R., Nikolova, D., Evstatieva, Y., & Danova, S. (2014). Antifungal activity and identification of lactobacilli, isolated from traditional dairy product “katak”.
Anaerobe, 28, 78–84.
https://doi.org/10.1016/j.anaerobe.2014.05.010
Tuma, S., Vogensen, F. K., Plockova, M., & Chumchalova, J. (2007). Isolation of antifungally active lactobacilli from Edam cheese.
Acta Alimentaria, 36(4), 405–414.
https://doi.org/10.1556/aalim.2007.0015
Wang, J., Chen, X., Liu, W., Yang, M., & Zhang, H. (2008). Identification of
Lactobacillus from koumiss by conventional and molecular methods.
European Food Research and Technology, 227(5), 1555–1561.
https://doi.org/10.1007/s00217-008-0880-4
Zhao, S., Hao, X., Yang, F., Wang, Y., Fan, X., & Wang, Y. (2022). Antifungal activity of
Lactobacillus plantarum ZZUA493 and its application to extend the shelf life of Chinese steamed buns.
Foods, 11(2), 195.
https://doi.org/10.3390/foods11020195
Zhao, X., Tang, F., Cai, W., Peng, B., Zhang, P., & Shan, C. (2023). Effect of fermentation by lactic acid bacteria on the phenolic composition, antioxidant activity, and flavor substances of jujube–wolfberry composite juice.
Food and Chemical Toxicology, 184, 114884.
https://doi.org/10.1016/j.lwt.2023.114884