Comparison Of Antioxidant Potential Of Some Fermented ‎Oilseed Meals Using Bacillus subtilis PTCC 1720‎

Document Type : Research Paper

Authors

1 Department of Biotechnology, Faculty of Biological Sciences, Alzahra University

2 Department of Biotechnology, Faculty of Biological Sciences, Al-Zahra University

Abstract

Recently, oilseed meal, a by-product of oil manufacturing, has become the most common animal feed. Regarding the critical role of antioxidants, this study evaluated the effects of fermentation on some press cake antioxidant activities. Sesame, soybean, cotton, corn, and tomato seed meals were used under Bacillus subtilis PTCC 1720 submerged fermentation. Antioxidant activity was evaluated using the DPPH inhibition and iron chelation methods. Also, the o-Phthalaldehyde test, thin layer chromatography with two reagents (DPPH and ninhydrin), and SDS-PAGE of proteins were conducted to assess the releasing peptides and anti-oxidant activity relationship. Results showed antioxidant activity in most meals increased significantly after 48 hs of fermentation (P<0.05) due to the increase of amino compounds. This activity reached its maximum at 96 hs after fermentation. After 96 h of fermentation, the highest DPPH radical inhibitory activity among the meal samples was observed in black sesame meal (61.2±5.9) and cotton meal (58.5±3.5). Moreover, the soybean sample had a maximum increase in iron ions chelating activity (50.93±4.7) after 96 hs incubation compared to the control. Therefore, the B.subtilis submerged fermentation process can raise antioxidant activity in samples, and antioxidant activity can improve meal nutritional value for livestock and poultry feeding.

Keywords

Main Subjects


Aruoma, O. I. (1994). Nutrition and health aspects of free radicals and antioxidants. Food and chemical toxicology32(7), 671-683. doi.org/10.1016/0278-6915(94)90011-6
Corrêa, A. P. F., Daroit, D. J., Fontoura, R., Meira, S. M. M., Segalin, J., & Brandelli, A. (2014). Hydrolysates of sheep cheese whey as a source of bioactive peptides with antioxidant and angiotensin-converting enzyme inhibitory activities. Peptides61, 48-55. doi.org/10.1016/j.peptides.2014.09.001
Corino, C., & Rossi, R. (2021). Antioxidants in animal nutrition. Antioxidants, 10(12), 1877. https://doi.org/10.3390/antiox10121877
Chen, L., Madl, R. L., Vadlani, P. V., Li, L., & Wang, W. (2013). Value-added products from soybean: removal of anti-nutritional factors via bioprocessing. Soybean: a review, 161-179.
Chantawannakul, P., Oncharoen, A., Klanbut, K., Chukeatirote, E., & Lumyong, S. (2002). Characterization of proteases of Bacillus subtilis strain 38 isolated from traditionally fermented soybean in Northern Thailand. Science Asia28(4), 241-245. doi: 10.2306/scienceasia1513-1874.2002.28.241
Church, F. C., Swaisgood, H. E., Porter, D. H., & Catignani, G. L. (1983). Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. Journal of dairy science66(6), 1219-1227 doi.org/10.3168/jds.S0022-0302(83)81926-2
Chen, Y., Wang, Y., Chen, J., Tang, H., Wang, C., Li, Z., & Xiao, Y. (2020). Bioprocessing of soybeans (Glycine max L.) by solid-state fermentation with Eurotium cristatum YL-1 improves total phenolic content, isoflavone aglycones, and antioxidant activity. RSC advances10(29), 16928-16941. DOI: 10.1039/c9ra10344a
Chen, Y. Q., Su, H. J., Ouyang, Y., Wang, J. M., Yang, X. Q., & Hu, W. F. (2017). Preparation and characterisation of glyceollin‐enriched soya bean protein using solid‐state fermentation. International Journal of Food Science & Technology, 52(8), 1878-1886. https://doi.org/10.1111/ijfs.13463
Dai, C., Yan, P., Xu, X., Huang, L., Dabbour, M., Benjamin, K. M., & Ma, H. (2023). Effect of single and two-stage fermentation on the antioxidative activity of soybean meal, and the structural and interfacial characteristics of its protein. Lwt183, 114938. https://doi.org/10.1016/j.lwt.2023.114938
Dajanta, K., Janpum, P., & Leksing, W. (2013). Antioxidant capacities, total phenolics and flavonoids in black and yellow soybeans fermented by Bacillus subtilis: A comparative study of Thai fermented soybeans (thua nao). International Food Research Journal20(6), 3125-3132.
Feng, X., Ng, K., Ajlouni, S., Zhang, P., & Fang, Z. (2024). Effect of solid-state fermentation on plant-sourced proteins: A review. Food Reviews International, 1-38. https://doi.org/10.1080/87559129.2023.2274490
Gregan, J., Riedel, C. G., Petronczki, M., Cipak, L., Rumpf, C., Poser, I.,  & Nasmyth, K. (2007). Tandem affinity purification of functional TAP-tagged proteins from human cells. Nature protocols2(5), 1145-1151. DOI: 10.1038/nprot.2007.172
Gänzle, M. G., Loponen, J., & Gobbetti, M. (2008). Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends in food science & technology, 19(10), 513-521. DOI: 10.1016/j.tifs.2008.04.002.
ISO (1977). "Oilseeds residues determination of total ash, ISO, Geneva." Standard No.749.
Juan, M. Y., & Chou, C. C. (2010). Enhancement of antioxidant activity, total phenolic and flavonoid content of black soybeans by solid state fermentation with Bacillus subtilis BCRC 14715. Food microbiology27(5), 586-591. DOI: 10.1016/j.fm.2009.11.002
Jagadi, M. M., Rundgren, M., & Ogle, R. B. (1987). Chemical composition and protein quality of Tanzanian cottonseed expeller cakes. ILCA Bulletin. https://hdl.handle.net/10568/4564
Je, J. Y., Lee, K. H., Lee, M. H., & Ahn, C. B. (2009). Antioxidant and antihypertensive protein hydrolysates produced from tuna liver by enzymatic hydrolysis. Food Research International, 42(9), 1266-1272. https://doi.org/10.1016/j.foodres.2009.06.013
Kook, M. C., Cho, S. C., Hong, Y. H., & Park, H. (2014). Bacillus subtilis fermentation for enhancement of feed nutritive value of soybean meal. Journal of applied biological chemistry57(2), 183-188.
Kalyanaraman, B. (2013). Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms. Redox biology1(1), 244-257.doi.org/10.1016/j.redox.2013.01.014
Komatsuzaki, N., Shima, J., Kawamoto, S., Momose, H., & Kimura, T. (2005). Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods. Food microbiology22(6), 497-504. doi.org/10.1016/j.fm.2005.01.002
Megías, C., Pedroche, J., Yust, M. M., Girón-Calle, J., Alaiz, M., Millán, F., & Vioque, J. (2008). Production of copper-chelating peptides after hydrolysis of sunflower proteins with pepsin and pancreatin. LWT-Food Science and Technology41(10), 1973-1977.  doi.org/10.1016/j.lwt.2007.11.010
Mukhtar, H., & Haq, I. (2013). Comparative evaluation of agroindustrial byproducts for the production of alkaline protease by wild and mutant strains of Bacillus subtilis in submerged and solid state fermentation. The Scientific World Journal2013(1), 538067.    doi.org/10.1155/2013/538067
Mohammad, A., Moheman, A., & El-Desoky, G. (2012). Amino acid and vitamin determinations by TLC/HPTLC: review of the current state. Open Chemistry10(3), 731-750. doi.org/10.2478/s11532-012-0019-0
Nasab, S. B., Homaei, A., Pletschke, B. I., Salinas-Salazar, C., Castillo-Zacarias, C., & Parra-Saldívar, R. (2020). Marine resources effective in controlling and treating diabetes and its associated complications. Process biochemistry92, 313-342. doi.org/10.1016/j.procbio.2020.01.024
Nielsen, P. M., Petersen, D., & Dambmann, C. J. J. O. F. S. (2001). Improved method for determining food protein degree of hydrolysis. Journal of food science66(5), 642-646.  doi.org/10.1111/j.1365-2621.2001.tb04614.x
Olmos, J., & Paniagua-Michel, J. (2014). Bacillus subtilis a potential probiotic bacterium to formulate functional feeds for aquaculture. J. Microb. Biochem. Technol6(7), 361-365.  DOI:10.4172/1948-5948.1000169
Permpoonpattana, P., Hong, H. A., Khaneja, R., & Cutting, S. M. (2012). Evaluation of Bacillus subtilis strains as probiotics and their potential as a food ingredient. Beneficial microbes3(2), 127-136. doi.org/10.3920/BM2012.0002
Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., ... & Bitto, A. (2017). Oxidative stress: harms and benefits for human health. Oxidative medicine and cellular longevity2017(1), 8416763. doi: 10.1155/2017/8416763
Ruth Etiosa, O., Blessing Chika, N., & Benedicta, A. (2018). Mineral and Proximate Composition of Soya Bean. Asian Journal of Physical and Chemical Sciences, 4(3), 1–6. https://doi.org/10.9734/AJOPACS/2017/38530
Sambrook, J., & Russell, D. W. (2006). SDS-polyacrylamide gel electrophoresis of proteins. CSH Protoc2006(4), pdb-prot4540.  DOI: 10.1101/pdb.prot4540
Song YS, Frías J, Martinez-Villaluenga C, Vidal-Valdeverde C, de Mejia EG. Immunoreactivity reduction of soybean meal by fermentation, effect on amino acid composition and antigenicity of commercial soy products. Food chemistry. 2008 May 15;108(2):571-81./doi.org/10.1016/j.foodchem.2007.11.013
Sun, B., Zou, K., Zhao, Y., Tang, Y., Zhang, F., Chen, W., ... & Zheng, Y. (2023). The fermentation optimization for alkaline protease production by Bacillus subtilis BS-QR-052. Frontiers in Microbiology14, 1301065. 
Sheih, I. C., Wu, T. K., & Fang, T. J. (2009). Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresource Technology100(13), 3419-3425. doi.org/10.1016/j.biortech.2009.02.014
Shariati, S., Zare, D., & Mirdamadi, S. (2018). Screening of carbon and nitrogen sources using mixture analysis designs for carotenoid production by Blakeslea trispora. Food science and biotechnology, 28(2), 469–479. https://doi.org/10.1007/s10068-018-0484-0
Terlabie, N. N., Sakyi-Dawson, E., & Amoa-Awua, W. K. (2006). The comparative ability of four isolates of Bacillus subtilis to ferment soybeans into dawadawa. International journal of food microbiology106(2), 145-152. https://doi.org/10.1016/j.ijfoodmicro.2005.05.021
Temple, N. J. (2000). Antioxidants and disease: more questions than answers. Nutrition research20(3), 449-459.  doi.org/10.1016/S0271-5317(00)00138-X
Tsaliki E, Lagouri V, Doxastakis G. Evaluation of the antioxidant activity of lupin seed flour and derivatives (Lupinus albus ssp. Graecus). Food Chemistry. 1999 Apr 1;65(1):71-5. doi.org/10.1016/S0308-8146(98)00172-1Get rights and content
Tian Y, Zhou Y, Kriisa M, Anderson M, Laaksonen O, Kütt ML, Föste M, Korzeniowska M, Yang B. Effects of fermentation and enzymatic treatment on phenolic compounds and soluble proteins in oil press cakes of canola (Brassica napus). Food Chemistry. 2023 May 30;409:135339. https://doi.org/10.1016/j.foodchem.2022.135339
Wang Y, Sun H, Liu X. A novel fermented rapeseed meal, inoculated with selected protease-assisting screened B. Subtilis YY-4 and L. Plantarum 6026, showed high availability and strong antioxidant and immunomodulation potential capacity. Foods. 2022 Jul 16;11(14):2118.doi.org/10.3390/foods11142118
Wang, J., Si, W., Du, Z., Zhang, J., & Xue, M. (2022). Antioxidants in Animal Feed. Antioxidants (Basel, Switzerland), 11(9), 1760. https://doi.org/10.3390/antiox11091760
Wang, Y., Sun, H., & Liu, X. (2022). A novel fermented rapeseed meal, inoculated with selected protease-assisting screened B. Subtilis YY-4 and L. Plantarum 6026, showed high availability and strong antioxidant and immunomodulation potential capacity. Foods, 11(14), 2118. https://doi.org/10.3390/foods11142118
Xie Z, Huang J, Xu X, Jin Z. Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food chemistry. 2008 Nov 15;111(2):370-6. doi.org/10.1016/j.foodchem.2008.03.078
Zaky, A. A., Simal-Gandara, J., Eun, J. B., Shim, J. H., & Abd El-Aty, A. M. (2022). Bioactivities, applications, safety, and health benefits of bioactive peptides from food and by-products: A review. Frontiers in Nutrition8, 815640. doi.org/10.3389/fnut.2021.815640
Zhang, Y., Zhang, H., Wang, L., Guo, X., Qi, X., & Qian, H. (2011). Influence of the degree of hydrolysis (DH) on antioxidant properties and radical-scavenging activities of peanut peptides prepared from fermented peanut meal. European Food Research and Technology232(6), 941-950  doi.org/10.1007/s00217-011-1466-0
Zhang, J., Zhang, H., Wang, L., Guo, X., Wang, X., & Yao, H. (2010). Isolation and identification of antioxidative peptides from rice endosperm protein enzymatic hydrolysate by consecutive chromatography and MALDI-TOF/TOF MS/MS. Food Chemistry119(1), 226-234.  doi.org/10.1016/j.foodchem.2009.06.015
Zhu, K., Zhou, H., & Qian, H. (2006). Antioxidant and free radical-scavenging activities of wheat germ protein hydrolysates (WGPH) prepared with alcalase. Process Biochemistry41(6), 1296-1302.  doi.org/10.1016/j.procbio.2005.12.029
Zhang, Y., Zhang, H., Wang, L., Guo, X., Qi, X., & Qian, H. (2011). Influence of the degree of hydrolysis (DH) on antioxidant properties and radical-scavenging activities of peanut peptides prepared from fermented peanut meal. European Food Research and Technology232(6), 941-950.   doi.org/10.1007/s00217-011-1466-0
Zhao, P. H., Hou, Y. C., Wang, Z., Liao, A. M., Pan, L., Zhang, J., & Ou, X. Q. (2023). Effect of fermentation on structural properties and antioxidant activity of wheat gluten by Bacillus subtilis. Frontiers in Nutrition10, 1116982. doi: 10.3389/fnut.2023.1116982