Assessment of the probiotic isolates features found in breast milk

Document Type : Research Paper

Authors

1 Department of Biotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran

2 Department of Biology, Faculty of Basic Science, Semnan University, Semnan, Iran

Abstract

The probiotics in breast milk can help children restore optimal growth. This study aimed to separate and identify probiotic microorganisms from human milk and evaluation of vitamin B production by these microorganisms. Biochemical tests were used to identify nine aerobic and 81 microaerophilic isolates from 34 breast milk samples; Probiotic traits were characterized for auto-aggregation, co-aggregation, hydrophobicity, acidity tolerance, lysozyme, bile salts, and papain treatment. Furthermore, in some of the probiotic isolates, the production of the Vitamin B group was detected by thin layer chromatography.

Breastmilk samples were collected from 34 healthy women with an average age of 27.5 ± 6.5 years. Eighty-one colonies were isolated under microaerophilic conditions based on different morphological characteristics. Fungi, gram-positive and gram-negative bacteria were composed 36%, 34%, and 30% of the isolates respectively. Two isolates with strong probiotic potential were molecularly examined and named Enterococcus faecalis (SUBC 156), and E. faecalis (SUBC 169). The highest resistance to acidity (18%) and bile salt (-1) was displayed by SUBC169, while SUBC156 survived lysozyme treatment and had a hydrophobicity of 56%. SUBC153 and SUBC156 produced vitamin B6 in a milk-containing MRS medium. Breast milk is recommended because of its probiotic qualities. Identifying those strains may confirm the true beneficial effect of probiotics in infant nutrition.

Keywords

Main Subjects


Abdulla, A. (2014). Adhesion, Autoaggregation and Hydrophobicity of Six Lactobacillus Strains. British Microbiology Research Journal, 4(4), 381–391. https://doi.org/10.9734/bmrj/2014/6462
Anjum, J., Zaidi, A., Barrett, K., & Tariq, M. (2022). A potentially probiotic strain of Enterococcus faecalis from human milk that is avirulent, antibiotic sensitive, and nonbreaching of the gut barrier. Archives of Microbiology, 204(2), 158. https://doi.org/10.1007/s00203-022-02754-8
Boris, S., Suárez, J. E., Vázquez, F., & Barbés, C. (1998). Adherence of human vaginal lactobacilli to vaginal epithelial cells and interaction with uropathogens. Infection and Immunity, 66(5), 1985–1989. https://doi.org/10.1128/iai.66.5.1985-1989.1998
Chou, L. S., & Weimer, B. (1999). Isolation and characterization of acid- and bile-tolerant isolates from strains of Lactobacillus acidophilus. Journal of Dairy Science, 82(1), 23–31. https://doi.org/10.3168/jds.s0022-0302(99)75204-5
Cimpoiu, C., & Hosu, A. (2007). Thin Layer Chromatography for the Analysis of Vitamins and Their Derivatives. Journal of Liquid Chromatography & Related Technologies, 30(5-7), 701–728. https://doi.org/10.1080/10826070701191011
Damaceno, Q. S., Souza, J. P., Nicoli, J. R., Paula, R. L., Assis, G. B., Figueiredo, H. C., Azevedo, V., & Martins, F. S. (2017). Evaluation of Potential Probiotics Isolated from Human Milk and Colostrum. Probiotics and Antimicrobial Proteins, 9(4), 371–379. https://doi.org/10.1007/s12602-017-9270-1
Duraisamy, S., Husain, F., Balakrishnan, S., Sathyan, A., Subramani, P., Chidambaram, P., Arokiyaraj, S., Al-Qahtani, W. H., Rajabathar, J., & Kumarasamy, A. (2022). Phenotypic Assessment of Probiotic and Bacteriocinogenic Efficacy of Indigenous LAB Strains from Human Breast Milk. Current Issues in Molecular Biology, 44(2), 731–749. https://doi.org/10.3390/cimb44020051
Frank, J. A., Reich, C. I., Sharma, S., Weisbaum, J. S., Wilson, B. A., & Olsen, G. J. (2008). Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Applied and Environmental Microbiology, 74(8), 2461–2470. https://doi.org/10.1128/AEM.02272-07
Gilliland, S. E., & Walker, D. K. (1990). Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. Journal of Dairy Science, 73(4), 905–911. https://doi.org/10.3168/jds.S0022-0302(90)78747-4
Khalil, E. S., Abd Manap, M. Y., Mustafa, S., Alhelli, A. M., & Shokryazdan, P. (2018). Probiotic Properties of Exopolysaccharide-Producing Lactobacillus Strains Isolated from Tempoyak. Molecules, 23(2), 398. https://doi.org/10.3390/molecules23020398
Kos, B., Susković, J., Vuković, S., Simpraga, M., Frece, J., & Matosić, S. (2003). Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus Journal of Applied Microbiology, 94(6), 981–987. https://doi.org/10.1046/j.1365-2672.2003.01915.x
LeBlanc, J. G., Laiño, J. E., Del Valle, M. J., Vannini, V., van Sinderen, D., Taranto, M. P., Valdez, G. F. de, Giori, G. S. de, & Sesma, F. (2011). B-group vitamin production by lactic acid bacteria—current knowledge and potential applications. Journal of Applied Microbiology, 111(6), 1297–1309. https://doi.org/10.1111/j.1365-2672.2011.05157.x
Liong, M. T., & Shah, N. P. (2005). Acid and bile tolerance and cholesterol removal ability of lactobacilli strains. Journal of Dairy Science, 88(1), 55–66. https://doi.org/10.3168/jds.s0022-0302(05)72662-x
Mahmoud, S. Y. M., Atallah, A. A., Badr, O. A., Moustafa, M. M. A., Esmael, A., Ebrahim, N., Aljeldah, M., Al Shammari, B., Alsafari, I. A., & Mohamed, S. A. (2022). Bioprospecting for Novel Probiotic Strains from Human Milk and Infants: Molecular, Biochemical, and Ultrastructural Evidence. Biology, 11(10), 1405. https://doi.org/10.3390/biology11101405
Maldonado, N. C., Ficoseco, C. A., Mansilla, F. I., Melián, C., Hébert, E. M., Vignolo, G. M., & Nader-Macías, M. E. F. (2018). Identification, characterization and selection of autochthonous lactic acid bacteria as probiotic for feedlot cattle. Livestock Science, 212, 99–110. https://doi.org/10.1016/j.livsci.2018.04.003
Nadya Salem Sultan Saeed Al Kalbani. (2018). Probiotic Characterization of Lactic Acid Bacteria (Lab) Isolated From Dried Emirati Fish and the Health Promoting Benefits of Fermented Fish Sausages by Selected Isolates [Master of Science (MS)]. College of Food and Agriculture.
Olivares, M., Díaz-Ropero, M. P., Martín, R., Rodríguez, J. M., & Xaus, J. (2006). Antimicrobial potential of four Lactobacillus strains isolated from breast milk. Journal of Applied Microbiology, 101(1), 72–79. https://doi.org/10.1111/j.1365-2672.2006.02981.x
P Vos, G Garrity, D Jones, NR Krieg, W Ludwig, FA Rainey, KH Schleifer, WB Whitman. (2011). Bergey’s manual of systematic bacteriology: The Firmicutes (Vol. 3). https://books.google.com/books?hl=en&lr=&id=0-VqgLiCPFcC&oi=fnd&pg=PR1&dq=Bergey%27s+manual%C2%AE+of+systematic+bacteriology+lactobacillus&ots=kJxbz_Iu5A&sig=XHe-jedMpDCm0hD9TU5fSDryamM
Pérez Ibarreche, M., Castellano, P., & Vignolo, G. (2014). Evaluation of anti-Listeria meat borne Lactobacillus for biofilm formation on selected abiotic surfaces. Meat Science, 96(1), 295–303. https://doi.org/10.1016/j.meatsci.2013.07.010
Pessoa, W. F. B., Melgaço, A. C. C., Almeida, M. E. de, Ramos, L. P., Rezende, R. P., & Romano, C. C. (2017). In Vitro Activity of Lactobacilli with Probiotic Potential Isolated from Cocoa Fermentation against Gardnerella vaginalis. BioMed Research International, 2017(1), 3264194. https://doi.org/10.1155/2017/3264194
Reis, N. A., Saraiva, M. A. F., Duarte, E. A. A., Carvalho, E. A. de, Vieira, B. B., & Evangelista-Barreto, N. S. (2016). Probiotic properties of lactic acid bacteria isolated from human milk. Journal of Applied Microbiology, 121(3), 811–820. https://doi.org/10.1111/jam.13173
Söderling, E. M., Marttinen, A. M., & Haukioja, A. L. (2011). Probiotic lactobacilli interfere with Streptococcus mutans biofilm formation in vitro. Current Microbiology, 62(2), 618–622. https://doi.org/10.1007/s00284-010-9752-9
Yildirim, Z., & Johnson, M. G. (1998). Detection and characterization of a bacteriocin produced by Lactococcus lactis Cremoris R isolated from radish. Letters in Applied Microbiology, 26(4), 297–304. https://doi.org/10.1046/j.1472-765X.1998.00335.x
Yuksekdag, Z., & Aslim, B. (2010). Assessment of potential probiotic- and starter properties of Pediococcus spp. Isolated from Turkish-type fermented sausages (sucuk). Journal of Microbiology and Biotechnology, 20(1), 161–168. https://doi.org/10.4014/jmb.0904.04019
Zakaria Gomaa, E. (2013). Antimicrobial and anti-adhesive properties of biosurfactant produced by lactobacilli isolates, biofilm formation and aggregation ability. The Journal of General and Applied Microbiology, 59(6), 425–436. https://doi.org/10.2323/jgam.59.425