Optimization of the microorganisms performance in tea compost for controlling African violet powdery mildew

Document Type : Research Paper

Author

Department of Plant Production, Agricultural Institute, Iranian Research Organization for Science and Technology, Tehran, Iran

Abstract

African violet (Saintpaulia ionantha) is one of the most important commercial plants with a unique variety in color and shape, which has made this potted plant more popular than before. African violet powdery mildew (Erysiphe cichoracearum) is one of the vital diseases of this plant, which covers the leaves like white felt. Despite the heavy use of chemical pesticides in commercial greenhouses, this disease still causes significant damage to this plant. Using different kind of compost in integrated pest management, are a suitable solution for obtaining high-quality products with minimal environmental impacts, due to the high population of microorganisms. In this research, in order to manage African violet powdery mildew in a healthy ecosystem, it was tried to use compost tea and vermicompost tea to control that using Taguchi design experiments method. To achieve this purpose, the effect of compost types was studied at four levels, along with consumption dosage and application intervals at two levels, on two varieties of African violets. The results demonstrated a significant impact of using compost tea on the control of powdery mildew in African violet. After analyzing the main effects of the variables, it was found that the application intervals did not show a significant effect, while the other three variables had a significant impact on the control of this disease. The result showed that the optimal conditions for powdery mildew control on the miniature cultivar involve using aerated compost tea with a dose of 20 cc.

Keywords

Main Subjects


[1] Repetto, R., & Baliga, S. S. (1996). Pesticides and the immune system: the public health risks (p. 100). Washington, DC: World Resources Institute.
[2] Zhou, Y., Xiao, R., Klammsteiner, T., Kong, X., Yan, B., Mihai, F. C., Liu, T., Zhang, Z., & Awasthi, M. K. (2022). Recent trends and advances in composting and vermicomposting technologies: A review. Bioresource
[3] Biyada, S., Merzouki, M., Dėmčėnko, T., Vasiliauskienė, D., Ivanec-Goranina, R., Urbonavičius, J., Marčiulaitienė, E., Vasarevičius, S., & Benlemlih, M. (2021). Microbial community dynamics in the mesophilic and thermophilic phases of textile waste composting identified through next-generation sequencing. Scientific Reports, 11(1), 23624. doi: 10.1038/s41598-021-03191-1
[4] da Silva Vilela, R. N., Orrico, A. C. A., Junior, M. A. P. O., Borquis, R. R. A., Tomazi, M., de Oliveira, J. D., de Ávila, M.R., dos Santos, F.T. & Leite, B. K. V. (2022). Effects of aeration and season on the composting of slaughterhouse waste. Environmental Technology & Innovation, 27, 102505. https://doi.org/10.1016/j.eti.2022.102505
[5] Chang, H. Q., Zhu, X. H., Jie, W. U., Guo, D. Y., Zhang, L. H., & Yao, F. E. N. G. (2021). Dynamics of microbial diversity during the composting of agricultural straw. Journal of Integrative Agriculture, 20(5), 1121-1136. https://doi.org/10.1016/S2095-3119(20)63341-X
[6] Salangsang, M. C. D., Sekine, M., Akizuki, S., Sakai, H. D., Kurosawa, N., & Toda, T. (2022). Effect of carbon to nitrogen ratio of food waste and short resting period on microbial accumulation during anaerobic digestion. Biomass and Bioenergy, 162, 106481. https://doi.org/10.1016/j.biombioe.2022.106481
[7] Rehman, S. U., De Castro, F., Aprile, A., Benedetti, M., & Fanizzi, F. P. (2023). Vermicompost: Enhancing plant growth and combating abiotic and biotic stress. Agronomy, 13(4), 1134. DOI:10.3390/agronomy13041134
[8] Eudoxie, G., & Martin, M. (2019). Compost tea quality and fertility. Organic fertilizers-history, production and applications. DOI:10.5772/intechopen.86877
[9] Morales-Corts, M. R., Pérez-Sánchez, R., & Gómez-Sánhez, M. Á. (2018). Efficiency of garden waste compost teas on tomato growth and its suppressiveness against soilborne pathogens. Scientia Agricola, 75, 400-409. https://doi.org/10.1590/1678-992X-2016-0439
[10] St. Martin, C. C. G. (2015). Potential of compost tea for suppressing plant diseases. CABI Reviews, (2014), 1-38. DOI:10.1079/PAVSNNR20149032
[11] St. Martin, C. C. G., & Brathwaite, R. A. I. (2012). Compost and compost tea: Principles and prospects as substrates and soil-borne disease management strategies in soil-less vegetable production. Biological Agriculture & Horticulture, 28(1), 1-33. DOI:10.1080/01448765.2012.671516
[12] Shaban, H., Fazeli-Nasab, B., Alahyari, H., Alizadeh, G., & Shahpesandi, S. (2015). An Overview of the Benefits of Compost tea on Plant and Soil Structure. Advances in Bioresearch, 6(1). DOI:10.15515/abr.0976‐4585.6.1.154158
[13] Matsuda, Y., Kashimoto, K., Takikawa, Y., Aikami, R., Nonomura, T., & Toyoda, H. (2001). Occurrence of new powdery mildew on greenhouse tomato cultivars. Journal of
General Plant Pathology, 67, 294-298. https://doi.org/10.1007/PL00013034
[14] Koné, S. B., Dionne, A., Tweddell, R. J., Antoun, H., & Avis, T. J. (2010). Suppressive effect of non-aerated compost teas on foliar fungal pathogens of tomato. Biological control, 52(2), 167-173. https://doi.org/10.1016/j.biocontrol.2009.10.018
[15] Leroux, P. (2007). Chemical control of Botrytis and its resistance to chemical fungicides. In Botrytis: Biology, pathology and control (pp. 195-222). Dordrecht: Springer Netherlands. DOI:10.1007/978-1-4020-2626-3_12
[16] Dong, S. M., & Zhou, S. Q. (2022). Potato late blight caused by Phytophthora infestans: From molecular interactions to integrated management strategies. Journal of Integrative Agriculture, 21(12), 3456.https://doi.org/10.1016/j.jia.2022.08.060
[17] Al-Dahmani, J. H., Abbasi, P. A., Miller, S. A., & Hoitink, H. A. (2003). Suppression of bacterial spot of tomato with foliar sprays of compost extracts under greenhouse and field conditions. Plant Disease, 87(8), 913-919. DOI: 10.1094/PDIS.2003.87.8.913
[18] Scheuerell, S. J., & Mahaffee, W. F. (2006). Variability associated with suppression of gray mold (Botrytis cinerea) on geranium by foliar applications of nonaerated and aerated compost teas. Plant Disease, 90(9), 1201-1208. https://doi.org/10.1094/PD-90-1201
[19] Segarra, G., Reis, M., Casanova, E., & Trillas, M. I. (2009). Control of powdery mildew (Erysiphe polygoni) in tomato by foliar applications of compost tea. Journal of Plant Pathology, 683-689. DOI:10.4454/JPP.V91I3.561
[20] Litterick, A. M., Harrier, L., Wallace, P., Watson, C. A., & Wood, M. (2004). The role of uncomposted materials, composts, manures, and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production—a review. Critical Reviews in Plant Sciences, 23(6), 453-479. DOI:10.1080/07352680490886815
[21] Seddigh, S., & Kiani, L. (2018). Evaluation of different types of compost tea to control rose powdery mildew (Sphaerotheca pannosa var. rosae). International Journal of Pest Management, 64(2), 178-184. DOI:10.1080/09670874.2017.1361050
[22] Seddigh, S., Kiani, L., Tafaghodinia, B., & Hashemi, B. (2014). Using aerated compost tea in comparison with a chemical pesticide for controlling rose powdery mildew. Archives of Phytopathology and Plant Protection, 47(6), 658-664. https://doi.org/10.1080/03235408.2013.817075
[23] Axel, C., Zannini, E., Coffey, A., Guo, J., Waters, D. M., & Arendt, E. K. (2012). Ecofriendly control of potato late blight causative agent and the potential role of lactic acid bacteria: a review. Applied Microbiology and Biotechnology, 96, 37-48. doi: 10.1007/s00253-012-4282
[24] Kamalpour, M., & Tafaghodinia, B. (2008). Evaluation of the effect of compost as soil bed for cucumber seedling production. Proceedings of the International Congress CODIS 2008, (pp. 251-252)., Solothurn, Switzerland.
[25] Lewis, J. A., Lumsden, R. D., Millner, P. D., & Keinath, A. P. (1992). Suppression of damping-off of peas and cotton in the field with composted sewage sludge. Crop Protection, 11(3), 260-266. https://doi.org/10.1016/0261-2194(92)90047-9
[26] Noble, R., & Coventry, E. (2005). Suppression of soil-borne plant diseases with composts: a review. Biocontrol Science and Technology, 15(1), 3-20. https://doi.org/10.1080/09583150400015904
[27] Van Raaij, J. A. G. M., Frijters, C. M. G., Kong, L. W. Y., Van den Berg, K. J., & Notten, W. R. F. (1994). Reduction of thyroxine uptake into cerebrospinal fluid and rat brain by hexachlorobenzene and pentachlorophenol. Toxicology, 94(1-3), 197-208. https://doi.org/10.1016/0300-483X(94)90038-8
[28] Kamalpour M. (2007) Crop integrated management of cucumber, MS Thesis, Azad university, Arak, 95pp.
[29] Tafaghodinia B. and Kamalpour M., (2012) Compost Tea, 2nd ed., Sepehr, Tehran, 72pp.
[30] Yari F., Tafaghodinia B., Ghaemmaghami A. (2019) Investigating the possibility of gene transferring in order to increase the longevity of African violet flowers and evaluation of powdery mildew sensitivity, Research report of Iranian Research Organization for Science and Technology, 108 pp.
[31] Stephens, R., Spurgeon, A., & Berry, H. (1997). Organophosphates: The relationship between chronic and acute exposure effects. Occupational Health and Industrial Medicine, 1(36), 27-28. https://doi.org/10.1016/0892-0362(96)00028-1
[32] SARE (Sustainable Agriculture Research & Education) Compost tea for disease management in horticultural crops. 2023 URL https://projects.sare.org/project-reports/lne03-181/. Accessed 22.04.15.
[33] Mostafa, M. F. M., El-Baz, E., El-Wahab, A., & Omar, A. S. (2011). Using different sources of compost tea on grapes. Journal of Plant Production, 2(7), 935-947. DOI:10.21608/jpp.2011.85627
[34] Lanthier, M. (2007). Compost tea and its impact on plant diseases. BC Organic Grower, 10(2), 8-11.
[35] Scheuerell, S. J., & Mahaffee, W. F. (2004). Compost tea as a container medium drench for suppressing seedling damping-off caused by Pythium ultimum. Phytopathology, 94(11), 1156-1163. doi:10.1094/PHYTO.2004.94.11.1156
[36] Bourbos, V. A., Skoudridakis, M. T., & Barbopoulou, E. (1998, May). Sodium bicarbonate for the control of Erysiphe polygoni in greenhouse tomato. In VI International Symposium on Processing Tomato & Workshop on Irrigation & Fertigation of Processing Tomato 487 (pp. 275-278). DOI:10.17660/ActaHortic.1999.487.41
[37] Naidu, Y., Meon, S., & Siddiqui, Y. (2013). Foliar application of microbial-enriched compost tea enhances growth, yield and quality of muskmelon (Cucumis melo L.) cultivated under fertigation system. Scientia Horticulturae, 159, 33-40. https://doi.org/10.1016/j.scienta.2013.04.024
[38] Yadav, N., Garg, V. K., Chhillar, A. K., & Rana, J. S. (2023). Recent advances in nanotechnology for the improvement of conventional agricultural systems: A Review. Plant Nano Biology, 100032. https://doi.org/10.1016/j.plana.2023.100032
[39] Ramírez-Gottfried, R. I., Preciado-Rangel, P., Carrillo, M. G., García, A. B., González-Rodríguez, G., & Espinosa-Palomeque, B. (2023). Compost Tea as Organic Fertilizer and Plant Disease Control: Bibliometric Analysis. Agronomy, 13(9), 2340. https://doi.org/10.3390/agronomy13092340.