Anti-toxoplasmic and anti-inflammatory activity of haloperidol in mice

Document Type : Research Paper

Authors

1 Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran

2 Molecular Parasitology Laboratory, Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran

Abstract

Toxoplasma gondii (T. gondii) infection rises the risk of emerging psycho-behavioral disorders, including schizophrenia and epilepsy. The widespread outbreak of T. gondii and its relation with psychiatric diseases raises the possibility of applying antipsychotic medications to control this parasite or parasite-based drugs to reduce neurological complications. According to reports, haloperidol prevented T. gondii tachyzoites from multiplying in culture. Animals receiving the medication did not, however, survive longer or develop fewer cysts during acute and chronic phase, respectively. In this study, the parasite’s repetitive DNA fragment REP529, the bradyzoite-specific protein BAG1, and the tachyzoite-specific protein SAG1 were quantified in mice brains treated with haloperidol by quantitative real-time PCR (qPCR) technique. Similar to the typical anti-toxoplasmosis drug, Trimethoprim/Sulfamethoxazole (TMP/SMZ), the therapy with haloperidol suppressed the Toxoplasma and lowered all the BAG1, SAG1, and REP529 copy counts in mouse brains (P < 0.0001). In addition, haloperidol reduced brain TNF expression similarly to TMP/SMZ (P < 0.0001). Mice brain histology revealed a substantial decrease in lymphocyte perivascular infiltration, glial nodules, and cyst formation the same as the TMP/SMZ group. Our findings offer concrete proof of the effectiveness of the mood-stabilizing and antipsychotic medication haloperidol in treating persistent Toxoplasma infection. These findings may be used to modify treatment plans for psychotic patients and create new potent anti-Toxoplasma medications.

Keywords

Main Subjects


Babaie, J., Sayyah, M., Choopani, S., Asgari, T., Golkar, M., Gharagozli, K. (2017). Toxoplasmosis accelerates acquisition of epilepsy in rats undergoing chemical kindling. Epilepsy Res., 135, 137-142. DOI: 10.1016/j.eplepsyres.2017.06.012
Babaie, J., Sayyah, M., Fard‐Esfahani, P., Golkar, M., Gharagozli, K. (2017). Contribution of dopamine neurotransmission in proconvulsant effect of Toxoplasma gondii infection in male mice. J. Neurosci. Res., 95(10), 1894-1905. DOI: 10.1002/jnr.24036
Babaie, J., Sayyah, M., Golkar, M. (2019). Effect of co-trimaxazole on REP-529 and TNF-α transcription levels in the brain of Toxoplasma gondii infected-mice. Iran. J. Physiol., 3(2), 107-199.
Boillat, M., Hammoudi, P.-M., Dogga, S. K., Pagès, S., Goubran, M., Rodriguez, I., Soldati-Favre, D. (2020). Neuroinflammation-associated aspecific manipulation of mouse predator fear by Toxoplasma gondii. Cell Rep., 30(2), 320-334. e326. DOI: 10.1016/j.celrep.2019.12.019
Brawek, B., Garaschuk, O. (2013). Microglial calcium signaling in the adult, aged and diseased brain. Cell Calcium, 53(3), 159-169. DOI: 10.1016/j.ceca.2012.12.003
[6] Burgdorf, K. S., Trabjerg, B. B., Pedersen, M. G., Nissen, J., Banasik, K., Pedersen, O. B., Sørensen, E., Nielsen, K. R., Larsen, M. H., Erikstrup, C. (2019). Largescale study of Toxoplasma and Cytomegalovirus shows an association between infection and serious psychiatric disorders. Brain Behav. Immun., 79, 152-158.  DOI: 10.1016/j.bbi.2019.01.026
Carruthers, V. B., Moreno, S. N., Sibley, D. L. (1999). Ethanol and acetaldehyde elevate intracellular [Ca2+] and stimulate microneme discharge in Toxoplasma gondii. Biochem. J., 342(2), 379-386.
Carruthers, V. B., Suzuki, Y. (2007). Effects of Toxoplasma gondii infection on the brain. Schizophr. Bull., 33(3), 745-751.  DOI: 10.1093/schbul/sbm008
Chaudhury, A., Ramana, B. (2019). Schizophrenia and bipolar disorders: The Toxoplasma connection. Trop. Parasitol., 9(2), 71. DOI: 10.4103/tp.TP_28_19
Chien, C.-C., Pasternak, G. W. (1994). Selective antagonism of opioid analgesia by a sigma system. J. Pharmacol. Exp. Ther., 271(3), 1583-1590. https://doi.org/10.1016/S0022-3565(25)24045-9
 Chien, C.-C., Pasternak, G. W. (1995). Sigma antagonists potentiate opioid analgesia in rats. Neurosci. Lett., 190(2), 137-139.
Comer, A. L., Carrier, M., Tremblay, M.-È., CruzMartín, A. (2020). The inflamed brain in schizophrenia: the convergence of genetic and environmental risk factors that lead to uncontrolled neuroinflammation. Front. Cell. Neurosci., 14, 274. DOI: 10.3389/fncel.2020.00274
Conceição, I. M., Frussa-Filho, R. (1996). Effects of microgram doses of haloperidol on open-field behavior in mice. Pharmacol. Biochem. Behav., 53(4), 833-838. https://doi.org/10.1016/0091-3057(95)02085-3
Enshaeieh, M., Saadatnia, G., Babaie, J., Golkar, M., Choopani, S., Sayyah, M. (2021). Valproic Acid Inhibits Chronic Toxoplasma Infection and Associated Brain Inflammation in Mice. J. Antimicrob. Chemother., 65(10), e01003-01021. DOI: 10.1128/AAC.01003-21
Fond, G., Boyer, L., Gaman, A., Laouamri, H., Attiba, D., Richard, J.-R., Delavest, M., Houenou, J., Le Corvoisier, P., Charron, D. (2015). Treatment with antitoxoplasmic activity (TATA) for toxoplasma positive patients with bipolar disorders or schizophrenia: a crosssectional study. J. Psychiatr. Res., 63, 58-64. DOI: 10.1016/j.jpsychires.2015.02.011
Fond, G., Macgregor, A., Tamouza, R., Hamdani, N., Meary, A., Leboyer, M., Dubremetz, J.-F. (2014). Comparative analysis of anti-toxoplasmic activity of antipsychotic drugs and valproate. Eur. Arch. Psychiatry Clin. Neurosci., 264(2), 179-183. DOI: 10.1007/s00406-013-0413-4
Ghorbani, M., & Sami, A. H. (1973). Toxoplasmic lymphadenitis in Iran.
Goodwin, D., Hrubec, T. C., Klein, B. G., Strobl, J. S., Werre, S. R., Han, Q., Zajac, A. M., Lindsay, D. S. (2012). Congenital infection of mice with Toxoplasma gondii induces minimal change in behavior and no change in neurotransmitter concentrations. J. Parasitol., 98(4), 706- 712. DOI: 10.1645/GE-3068.1
Goodwin, D. G., Strobl, J., Mitchell, S. M., Zajac, A. M., Lindsay, D. S. (2008). Evaluation of the moodstabilizing agent valproic acid as a preventative for toxoplasmosis in mice and activity against tissue cysts in mice. J. Parasitol. Res., 94(2), 555-557. DOI10.1645/GE-1346.1
Goodwin, D. G., Strobl, J. S., & Lindsay, D. S. (2011). Evaluation of five antischizophrenic agents against Toxoplasma gondii in human cell cultures. The Journal of parasitology97(1), 148-151.
Haroon, F., Händel, U., Angenstein, F., Goldschmidt, J., Kreutzmann, P., Lison, H., Fischer, K.-D., Scheich, H., Wetzel, W., Schlüter, D. (2012). Toxoplasma gondii actively inhibits neuronal function in chronically infected mice. PLoS One, 7(4), e35516. DOI: 10.1371/journal.pone.0035516
Hawk, C., Leary, S. L., & Morris, T. H. (2005). American College of Laboratory Animal Medicine, European College of Laboratory Animal Medicine. Formulary for laboratory animals. 3rd ed. Ames, Iowa: Blackwell Pub.
Hwang, Y. S., Shin, J. H., Yang, J. P., Jung, B. K., Lee, S. H., & Shin, E. H. (2018). Characteristics of infection immunity regulated by Toxoplasma gondii to maintain chronic infection in the brain. Frontiers in immunology9, 158. DOI: 10.3389/fimmu.2018.00158
Johannessen, C. U. (2000). Mechanisms of action of valproate: a commentatory. Neurochemistry international37(2-3), 103-110.  DOI: 10.1016/s0197-0186(00)00013-9
Jones-Brando, L., Torrey, E. F., Yolken, R. (2003). Drugs used in the treatment of schizophrenia and bipolar disorder inhibit the replication of Toxoplasma gondii. Schizophr. Res., 62(3), 237-244.  DOI: 10.1016/s0920-9964(02)00357-2
Kato, T., Monji, A., Hashioka, S., Kanba, S. (2007). Risperidone significantly inhibits interferon-γ-induced microglial activation in vitro. Schizophr. Res., 92(1-3), 108-115. DOI: 10.1016/j.schres.2007.01.019
Kato, T. A., Monji, A., Yasukawa, K., Mizoguchi, Y., Horikawa, H., Seki, Y., Hashioka, S., Han, Y.-H., Kasai, M., Sonoda, N. (2011). Aripiprazole inhibits superoxide generation from phorbol-myristate-acetate (PMA)- stimulated microglia in vitro: implication for antioxidative psychotropic actions via microglia. Schizophr. Res., 129(2- 3), 172-182. DOI: 10.1016/j.schres.2011.03.019
Kowalski, J., Labuzek, K., Herman, Z. S. (2003). Flupentixol and trifluperidol reduce secretion of tumor necrosis factor-α and nitric oxide by rat microglial cells. Neurochem. Int., 43(2), 173-178. DOI: 10.1016/s0197-0186(02)00163-8
Lee, K. S., Chae, S. W., Park, J. H., Park, J. H., Choi, J. M., Rhie, S., Lee, H. J. (2013). Effects of single or repeated silymarin administration on pharmacokinetics of risperidone and its major metabolite, 9-hydroxyrisperidone in rats. Xenobiotica, 43(3), 303-310. DOI: 10.3109/00498254.2012.731092
Leweke, F. M., Gerth, C. W., Koethe, D., Klosterkötter, J., Ruslanova, I., Krivogorsky, B., Torrey, E. F., Yolken, R. H. (2004). Antibodies to infectious agents in individuals with recent onset schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci., 254(1), 4-8. DOI: 10.1007/s00406-004-0481-6
Lovett, J. L., Sibley, L. D. (2003). Intracellular calcium stores in Toxoplasma gondii govern invasion of host cells. J. Cell Sci., 116(14), 3009-3016. DOI: 10.1242/jcs.00596
Lü, L. X., Guo, S. Q., Chen, W., Li, Q., Cheng, J., & Guo, J. H. (2004). Effect of clozapine and risperidone on serum cytokine levels in patients with first-episode paranoid schizophrenia. Di 1 jun yi da xue xue bao= Academic Journal of the First Medical College of PLA24(11), 1251-1254.
Lüder, C. G., Giraldo-Velásquez, M., Sendtner, M., & Gross, U. (1999). Toxoplasma gondii in primary rat CNS cells: differential contribution of neurons, astrocytes, and microglial cells for the intracerebral development and stage differentiation. Experimental parasitology93(1), 23-32. DOI: 10.1006/expr.1999.4421
Mendez, O. A., Koshy, A. A. (2017). Toxoplasma gondii: Entry, association, and physiological influence on the central nervous system. PLoS Pathog., 13(7), e1006351. DOI: 10.1371/journal.ppat.1006351
Miller, B. J., Buckley, P., Seabolt, W., Mellor, A., & Kirkpatrick, B. (2011). Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biological psychiatry70(7), 663-671. DOI: 10.1016/j.biopsych.2011.04.013
Mizoguchi, Y., Kato, T. A., Horikawa, H., Monji, A. (2014). Microglial intracellular Ca2+ signaling as a target of antipsychotic actions for the treatment of schizophrenia. Front. Cell. Neurosci., 8, 370.
Monji, A., Kato, T. A., Mizoguchi, Y., Horikawa, H., Seki, Y., Kasai, M., Yamauchi, Y., Yamada, S., Kanba, S. (2013). Neuroinflammation in schizophrenia especially focused on the role of microglia. Prog. NeuroPsychopharmacol. Biol. Psychiatry., 42, 115-121. DOI: 10.1016/j.pnpbp.2011.12.002
Muller, N., & Schwarz, M. J. (2007). The immunological basis of glutamatergic disturbance in schizophrenia: towards an integrated view. Journal of neural transmission Supplementum72, 269.
Myint, A.-M., Kim, Y.-K. (2014). Network beyond IDO in psychiatric disorders: revisiting neurodegeneration hypothesis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry., 48, 304-313. https://doi.org/10.1016/j.pnpbp.2013.08.008
Nagamune, K., Sibley, L. D. (2006). Comparative genomic and phylogenetic analyses of calcium ATPases and calcium-regulated proteins in the apicomplexa.  Mol. Biol., 23(8), 1613-1627. https://doi.org/10.1093/molbev/msl026
Pezzella, N., Bouchot, A., Bonhomme, A., Pingret, L., Klein, C., Burlet, H., Balossier, G., Bonhomme, P., Pinon, J. (1997a). Involvement of calcium and calmodulin in Toxoplasma gondii tachyzoite invasion. Eur. J. Cell Biol., 74(1), 92.
Pezzella, N., Bouchot, A., Bonhomme, A., Pingret, L., Klein, C., Burlet, H., Balossier, G., Bonhomme, P., Pinon, J. (1997b). Involvement of calcium and calmodulin in Toxoplasma gondii tachyzoite invasion. Eur. J. Cell Biol., 74(1), 92-101.
Potvin, S., Stip, E., Sepehry, A. A., Gendron, A., Bah, R., Kouassi, E. (2008). Inflammatory cytokine alterations in schizophrenia: a systematic quantitative review. Biol. Psychiatry, 63(8), 801-808. https://doi.org/10.1016/j.biopsych.2007.09.024
Prole, D. L., Taylor, C. W. (2011). Identification of intracellular and plasma membrane calcium channel homologues in pathogenic parasites. PLoS One, 6(10), e26218. https://doi.org/10.1371/journal.pone.0026218
Qin, J., Zima, A. V., Porta, M., Blatter, L. A., & Fill, M. (2009). Trifluoperazine: a rynodine receptor agonist. Pflügers Archiv-European Journal of Physiology458(4), 643-651. DOI: 10.1007/s00424-009-0658-y
Quiñones‐Torrelo, C., Sagrado‐Vives, S., Villanueva‐Camañas, R., Medina‐Hernández, M. (2001). An LD50 model for predicting psychotropic drug toxicity using biopartitioning micellar chromatography. Biomed. Chromatogr., 15(1), 31-40. DOI: 10.1002/bmc.24
Roizen, N., Kasza, K., Karrison, T., Mets, M., Noble, A. G., Boyer, K., Swisher, C., Meier, P., Remington, J., Jalbrzikowski, J. (2006). Impact of visual impairment on measures of cognitive function for children with congenital toxoplasmosis: implications for compensatory intervention strategies. Pediatrics, 118(2), e379-e390. DOI: 10.1542/peds.2005-1530
Rushlow, W., Seah, C., Sutton, L., Bjelica, A., Rajakumar, N. (2009). Antipsychotics affect multiple calcium calmodulin dependent proteins. J. Neurosci., 161(3), 877-886. DOI: 10.1016/j.neuroscience.2009.03.011
Saadatnia, G., Golkar, M. (2012). A review on human toxoplasmosis. Scand. J. Infect. Dis., 44(11), 805- 814. DOI: 10.3109/00365548.2012.693197
Saraei, M., Ghaderi, Y., Mosavi, T., Shahnazi, M., Nassiri-Asl, M., Jahanihashemi, H. (2016). The effect of fluphenazine and thioridazine on Toxoplasma gondii in vivo. Iran. J. Parasitol., 11(2), 226.
Saraei, M., Samadzadeh, N., Khoeini, J., Shahnazi, M., Nassiri-Asl, M., Jahanihashemi, H. (2015). In vivo antiToxoplasma activity of aripiprazole. Iran. J. Basic Med. Sci., 18(9), 938. 
Sharma, P., Ping, L. (2014). Calcium ion influx in microglial cells: physiological and therapeutic significance. j. Neurosci. Res., 92(4), 409-423.
Sommer, I. E., van Westrhenen, R., Begemann, M. J., de Witte, L. D., Leucht, S., & Kahn, R. S. (2014). Efficacy of anti-inflammatory agents to improve symptoms in patients with schizophrenia: an update. Schizophrenia bulletin40(1), 181-191. doi: 10.1093/schbul/sbt139
Strobl, J. S., Cassell, M., Mitchell, S. M., Reilly, C. M., Lindsay, D. S. (2007). Scriptaid and suberoylanilide hydroxamic acid are histone deacetylase inhibitors with potent anti–Toxoplasma gondii activity in vitro. J. Parasitol. Res., 93(3), 694-700. DOI: 10.1645/GE-1043R.1
Strobl, J. S., Goodwin, D. G., Rzigalinski, B. A., Lindsay, D. S. (2012). Dopamine stimulates propagation of Toxoplasma gondii tachyzoites in human fibroblast and primary neonatal rat astrocyte cell cultures. J. Parasitol., 98(6), 1296-1299. DOI: 10.1645/GE-2760.1
Sun, F., Su, Z., Sui, C., Zhang, C., Yuan, L., Meng, Q., Teng, L., Li, Y. (2010). Studies on the acute toxicity, pharmacokinetics and pharmacodynamics of paliperidone derivatives–comparison to paliperidone and risperidone in mice and rats. Basic Clin. Pharmacol. Toxicol., 107(2), 656- 662. DOI: 10.1111/j.1742-7843.2010.00552.x
Tedford, E., & McConkey, G. (2017). Neurophysiological changes induced by chronic Toxoplasma gondii infection. Pathogens6(2), 19.  doi: 10.3390/pathogens6020019
Torgerson, P. R., Mastroiacovo, P. (2013). The global burden of congenital toxoplasmosis: a systematic review. Bull. World Health Organ., 91, 501-508. DOI: 10.2471/BLT.12.111732
Torrey, E. F., Bartko, J. J., Yolken, R. H. (2012). Toxoplasma gondii and other risk factors for schizophrenia: an update. Schizophr. Bull., 38(3), 642-647. DOI: 10.1093/schbul/sbs043
Torrey, E. F., Yolken, R. H. (2003). Toxoplasma gondii and schizophrenia. Emerg. Infect. Dis., 9(11), 1375. DOI: 10.3201/eid0911.030143
Tyebji, S., Seizova, S., Hannan, A. J., & Tonkin, C. J. (2019). Toxoplasmosis: a pathway to neuropsychiatric disorders. Neuroscience & Biobehavioral Reviews96, 72-92. DOI: 10.1016/j.neubiorev.2018.11.012
Wagner, R., Fink, R., Stephenson, D. (2004). Effects of chlorpromazine on excitation–contraction coupling events in fast‐twitch skeletal muscle fibres of the rat. Br. J. Pharmacol., 141(4), 624-633. DOI: 10.1038/sj.bjp.0705655
Wallon, M., Kodjikian, L., Binquet, C., Garweg, J., Fleury, J., Quantin, C., Peyron, F. (2004). Long-term ocular prognosis in 327 children with congenital toxoplasmosis. Pediatrics, 113(6), 1567-1572. DOI: 10.1542/peds.113.6.1567
Wang, H., Liu, S., Tian, Y., Wu, X., He, Y., Li, C., Namaka, M., Kong, J., Li, H., Xiao, L. (2015). Quetiapine inhibits microglial activation by neutralizing abnormal STIM1-mediated intercellular calcium homeostasis and promotes myelin repair in a cuprizone-induced mouse model of demyelination. Front. Cell. Neurosci., 9, 492. https://doi.org/10.3389/fncel.2015.00492
Watts, E., Zhao, Y., Dhara, A., Eller, B., Patwardhan, A., & Sinai, A. P. (2015). Novel approaches reveal that Toxoplasma gondii bradyzoites within tissue cysts are dynamic and replicating entities in vivo. MBio6(5), 10-1128. https://doi.org/10.1128/mbio.01155-15
Webster, J., Lamberton, P., Donnelly, C.,  Torrey, E. (2006). Parasites as causative agents of human affective disorders? The impact of anti-psychotic, mood-stabilizer and anti-parasite medication on Toxoplasma gondii's ability to alter host behaviour. Proc. R. Soc. B: Biol. Sci., 273(1589), 1023-1030.  doi: 10.1098/rspb.2005.3413
Webster, J. P., Kaushik, M., Bristow, G. C., McConkey, G. A. (2013). Toxoplasma gondii infection, from predation to schizophrenia: can animal behaviour help us understand human behaviour? J. Exp. Biol., 216(1), 99- 112. doi: 10.1242/jeb.074716
Weiss, L. M., Kim, K., 2011. Toxoplasma gondii: the model apicomplexan. Perspectives and methods: Elsevier.