The abundance of capsule (wabG) and fimbria (fimH) coding genes in multidrug-resistant Klebsiella pneumoniae strains isolated from patients admitted to Isfahan hospitals

Document Type : Research Paper

Authors

Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran

Abstract

The high resistance of K. pneumoniae strains to various antibiotics is remarkable. The most important virulence factors for K. pneumoniae include fimbriae, capsule, lipopolysaccharide, outer membrane proteins, and iron transport molecules. The aim of this study was to investigate the prevalence of capsule (wabG) and fimbriae (fimH) coding genes in MDR K. pneumoniae  strains isolated from patients admitted to Isfahan (Iran) hospitals. The antibiotic susceptibility pattern of the isolates was carried out by the disk diffusion method. Definitive confirmation of MDR isolates was done by tracing the 16S-23S ITS gene, and the presence of capsule (wabG) and fimbriae (fimH) genes was investigated in the isolates. Data analysis was done using an independent parametric T-test and one-way analysis of variance (ANOVA). One hundred and two K. pneumoniae  isolates were detected in the samples, including urine, respiratory tract, blood, throat, cerebrospinal fluid, direct discharge, wound secretions, pleural fluid, joint fluid, abscess discharge, stool, and sputum. Men were significantly more infected with K. pneumoniae than women. The highest frequency of the isolates was related to urine (40%), followed by the respiratory tract (27%). The largest number of isolates were found in the ICU (37%) and emergency (28%) departments. Out of the 102 isolates of K. pneumoniae, 50 isolates (49%) were MDR, and 50 (49%) were carbapenem-resistant. Of the 50 MDR isolates, 48 (96%) and 47 (94%) had fimH and wabG genes, respectively. High frequencies of MDR and carbapenem-resistant strains of K. pneumoniae with a high prevalence of fimH and wabG genes are significant and should be considered by healthcare management.
 

Keywords

Main Subjects


Ballén, V., Gabasa, Y., Ratia, C., Ortega, R., Tejero, M., & Soto, S. (2021). Antibiotic resistance and virulence profiles of Klebsiella pneumoniae strains isolated from different clinical sources. Frontiers in Cellular and Infection Microbiology11, 738223.https://doi.org/10.3389/fcimb.2021.738223
Boucher, H. W., Talbot, G. H., Bradley, J. S., Edwards, J. E., Gilbert, D., Rice, L. B., ... & Bartlett, J. (2009). Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clinical infectious diseases48(1), 1-12.https://doi.org/10.1086/595011.
Cassini, A., Plachouras, D., Eckmanns, T., Abu Sin, M., Blank, H. P., Ducomble, T., ... & Suetens, C. (2016). Burden of six healthcare-associated infections on European population health: estimating incidence-based disability-adjusted life years through a population prevalence-based modelling study. PLoS medicine13(10), e1002150.https://doi.org/10.1371/journal.pmed.1002150
Choi, M., Hegerle, N., Nkeze, J., Sen, S., Jamindar, S., Nasrin, S., Sen, S., Permala-Booth, J., Sinclair, J., Tapia, M.D. and Tennant, S. M. (2020). The diversity of lipopolysaccharide (O) and capsular polysaccharide (K) antigens of invasive Klebsiella pneumoniae in a multi-country collection. Frontiers in microbiology, 11, 1249. https://doi.org/10.3389/fmicb.2020.01249
Gan, L., Yan, C., Cui, J., Xue, G., Fu, H., Du, B., Zhao, H., Feng, J., Feng, Y., Fan, Z. and Yuan, J. (2022). Genetic diversity and pathogenic features in Klebsiella pneumoniae isolates from patients with pyogenic liver abscess and pneumonia. Microbiology Spectrum, 10(2), e02646-21. DOI: 10.1128/spectrum.02646-21
Gorrie, C. L., Mirčeta, M., Wick, R. R., Judd, L. M., Lam, M. M., Gomi, R., Abbott, I.J., Thomson, N.R., Strugnell, R.A., Pratt, N.F. and Holt, K. E. (2022). Genomic dissection of Klebsiella pneumoniae infections in hospital patients reveals insights into an opportunistic pathogen. Nature communications, 13(1), 3017. DOI: 10.1038/s41467-022-30717-6
Guo, Y., Wang, S., Zhan, L., Jin, Y., Duan, J., Hao, Z., Lv, J., Qi, X., Chen, L., Kreiswirth, B.N. and Yu, F. (2017). Microbiological and clinical characteristics of hypermucoviscous Klebsiella pneumoniae isolates associated with invasive infections in China. Frontiers in cellular and infection microbiology, 7, 24. https://doi.org/10.3389/fcimb.2017.00024. eCollection 2017.
Hamidi Hesari, M., & Hemmat, J. (2022). A large increase in the antibiotic resistance of Klebsiella pneumoniae causing urinary tract infections after the Coronavirus pandemic. Microbiology, Metabolites and Biotechnology5(2), 83-91. https://doi.org/ 10.22104/MMB.2023.6234.1102
Hasani, A., Soltani, E., Ahangarzadeh Rezaee, M., Pirzadeh, T., Ahangar Oskouee, M., Hasani, A., ... & Binesh, E. (2020). Serotyping of Klebsiella pneumoniae and its relation with capsule-associated virulence genes, antimicrobial resistance pattern, and clinical infections: a descriptive study in medical practice. Infection and Drug Resistance, 1971-1980. https://doi.org/10.2147/IDR.S243984.
Huang, X., Li, X., An, H., Wang, J., Ding, M., Wang, L., Li, L., Ji, Q., Qu, F., Wang, H. and Zhang, J. R. (2022). Capsule type defines the capability of Klebsiella pneumoniae in evading Kupffer cell capture in the liver. PLoS Pathogens, 18(8), e1010693. https://doi.org/10.1371/journal.ppat.1010693.
Jin, Z., Wang, Z., Gong, L., Yi, L., Liu, N., Luo, L. and Gong, W. (2022). Molecular epidemiological characteristics of carbapenem-resistant Klebsiella pneumoniae among children in China. AMB Express, 12(1), 1-10.  https://doi.org/10.1186/s13568-022-01437-3.
Karampatakis, T., Tsergouli, K. and Behzadi, P., (2023). Carbapenem-resistant K. pneumoniae: virulence factors, molecular epidemiology and latest updates in treatment options. Antibiotics, 12(2), 234. https://doi.org/10.3390/antibiotics12020234.
Li, J., Tang, M., Liu, Z., Xia, F., Min, C., Hu, Y., Wang, H. and Zou, M. (2022). Molecular and clinical characterization of hypervirulent K. pneumoniae isolates from individuals with urinary tract infections. Frontiers in Cellular and Infection Microbiology, 12, 1159. https://doi.org/10.3389/fcimb.2022.925440
Magill, S. S., Edwards, J. R., Bamberg, W., Beldavs, Z. G., Dumyati, G., Kainer, M. A., Ruth Lynfield, M.D., Maloney, M., McAllister-Hollod, L., Nadle, J., Ray, S. M., Thompson, D. L. and Fridkin, S. K. (2014). Multistate point-prevalence survey of health care–associated infections. New England Journal of Medicine, 370(13), 1198-1208. https://doi.org/10.1056/NEJMoa1306801
Makhrmash, J. H., Al-Aidy, S. R., & Qaddoori, B. H. (2022). Investigation of biofilm virulence genes prevalence in Klebsiella pneumoniae isolated from the urinary tract infectionsArchives of Razi Institute, 77(4), 1421.https://doi.org/10.22092/ARI.2022.357626.2076
Niazadeh, M., Nikkhahi, F., Robatjazi, S., Javadi, A., Farzam, S. A., Babaei, S. and Zeynali, P. (2022). Evaluation of mechanisms of colistin resistance in K. pneumoniae strains isolated from patients with urinary tract infection in ICU. Iranian Journal of Microbiology, 14(1), 31. https://doi.org/10.18502/ijm.v14i1.8798
Pan, Y. J., Lin, T. L., Chen, C. T., Chen, Y. Y., Hsieh, P. F., Hsu, C. R., ... & Wang, J. T. (2015). Genetic analysis of capsular polysaccharide synthesis gene clusters in 79 capsular types of Klebsiella spp. Scientific reports, 5(1), 15573.https://doi.org/10.1128/AEM.03742-12
Patil, S., Dong, S., Francisco, N. M., Liu, S., & Wen, F. (2023). Emergence of multidrug-resistant Klebsiella pneumoniae in hospitalised young children. The Lancet Microbe4(6), e390. https://doi.org/10.1016/S2666-5247(23)00094-0
Petrosillo, N., Giannella, M., Lewis, R. and Viale, P. (2013). Treatment of carbapenem-resistant K. pneumoniae : the state of the art. Expert Review of Anti-Infective Therapy, 11(2), 159-177. https://doi.org/10.1586/eri.12.162
Reyes, J., Aguilar, A. C. and Caicedo, A., (2019). Carbapenem-resistant K. pneumoniae : microbiology key points for clinical practice. International Journal of General Medicine, 12, 437–446. https://doi.org/10.2147/IJGM.S214305.
Riwu, K. H. P., Effendi, M. H., Rantam, F. A., Khairullah, A. R. and Widodo, A. (2022). A review: Virulence factors of K. pneumonia as emerging infection on the food chain. Veterinary World, 15(9), 2172–2179. https://doi.org/10.14202/vetworld.2022.2172-2179
Sánchez-Romero, M. I., Moya, J. M. G. L., López, J. J. G., & Mira, N. O. (2019). Collection, transport and general processing of clinical specimens in Microbiology laboratory. Enfermedades infecciosas y microbiologia clinica (English ed.)37(2), 127-134. https://10.1016/j.eimce.2017.12.005
Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., ... & Zorzet, A. (2018). Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet infectious diseases18(3), 318-327. https://doi.org/10.1016/S1473-3099(17)30753-3.
Tan, Y. H., Chen, Y., Chu, W., Sham, L. and Gan, Y. H., (2020). Cell envelope defects of different capsule-null mutants in K1 hypervirulent K. pneumoniae can affect bacterial pathogenesis. Molecular Microbiology, 112, 34-45. https://doi.org/10.1111/mmi.14447.
Turton, J. F., Perry, C., Elgohari, S. and Hampton, C. V. (2010). PCR characterization and typing of K. pneumoniae using capsular type-specific, variable number tandem repeat and virulence gene targets. Journal of Medical Microbiology, 59(5), 541-547. https://doi.org/10.1099/jmm.0.015198-0.
Walker, K. A. and Miller, V. L. (2020). The intersection of capsule gene expression, hypermucoviscosity and hypervirulence in K. pneumoniae . Current Opinion in Microbiology, 54, 95-102. https://doi.org/10.1016/j.mib.2020.01.006. Epub 2020 Feb 12
Xu, Q., Yang, X., Chan, E. and Chen, S. (2021). K. pneumoniae the hypermucoviscosity of hypervirulent confers the ability to evade neutrophil-mediated phagocytosis. Virulence. 12(1): 2050-2059. https://doi.org/10.1080/21505594.2021.1960101
Zhu, J., Wang, T., Chen, L. and Du, H., (2021). Virulence factors in hypervirulent K. pneumoniae . Frontiers in Microbiology, 12, 642484. https://doi.org/10.3389/fmicb.2021.642484