Antibacterial activities and Chemical composition of essential oils of Cupressus sempervirence L. and C. funebris Endl. in Khuzestan, Iran

Document Type : Research Paper

Authors

1 Department of Horticulture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran. nas.farasat9@gmail.com,

2 Department of Horticulture, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran

3 Department of Pharmacognosy and Traditional Pharmacy, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran

4 MSc.in Plant developmental cell, Ghadir Research Center, Ahvaz, Iran

5 Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran

Abstract

Essential oils of different plants are widely used in the pharmaceutical and food fields. The chemical composition of essential oils of Cupressus sempervirence L. and C. funebris Endl. Were obtained by a Clevenger apparatus and analyzed by chromatography–mass spectrometry (GC/MS) to assess the composition of the essential oils, study antimicrobial properties, and compare the effect of the essential oils of two Cupressus species with imipenem as a carbapenem antibiotic on wound infections. The essential oil efficiency was estimated at a rate of 0.3%. In total, ten compounds were identified from the essential oils of each species. The results showed that C. sempervirens mainly consisted of 21.5% totarol, 15.54% delta-3-carene, 14.37% α-pinene, and 11.78% phenanthrene; C. funebris mainly contained 24% α-cedrol, 18.11% naphthalene, 12.96% α-pinene, 10.05% delta-3-carene, and 9.3% α-cedrene. The results of the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) showed that the essential oils of two species could inhibit the growth of most strains of Pseudomonas aeruginosa (Schroeter 1872) Migula 1900 (DSM 50071T). Time-killing assay revealed that essential oils further reduced bacterial colony growth after 24 hours’ incubation compared to imipenem. However, the essential oils of two Cupressus species showed more efficient bactericidal effects versus imipenem.

Keywords

Main Subjects


Abdillahi, H. S., Stafford, G. I., Finnie, J. F., & van Staden, J. (2009). Ethnobotany, phytochemistry and pharmacology of Podocarpus sensu latissimo (s.l.). South African Journal of Botany 76, 1-24. https://doi.org/10.1016/j.sajb.2009.09.002
Adams, R. P., & Li, S. (2008). The Botanical Source of Chinese Cedarwood Oil: Cupressus funebris or Cupressaceae Species. Journal of Essential Oil Research 20(3), 235-242. https://doi.org/10.1080/10412905.2008.9700001
Arjouni, M. Y., Bahri, F., Romane, A., & Fels, M. A. E. A. E. (2011). Chemical composition and antimicrobial activity of essential oil of Cupressus atlantica. Natural product communications6(10), 1934578X1100601028..  https://doi.org/10.1177/1934578X1100601028
Asgary, S., Ali Naderi, G., Ardekani, M. R. S., Sahebkar, A., Airin, A., Aslani, S., Kasher, T., & Emami, S. A. (2013). Chemical analysis and biological activities of Cupressus sempervirens var. horizontalis essential oils. Pharmaceutical Biology 51(2), 137–144. https://doi.org/10.3109/13880209.2012.715168
Balouiri, M., Sadiki, M., & Ibnsouda, S. K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005
] Boukhris, M., Regane, G., Yangui, T., Sayadi, S., & Bouaziz, M. (2012). Chemical composition and biological potential of essential oil from Tunisian Cupressus sempervirens L. Journal of Arid Land Studies 22, 329-332.
Breitmeier, E. (2006). Terpenes: flavors, fragrances, pharmaca, pheromones. Wiley-VCH, Weinheim. 46–47.
Carroll, J. F., Tabanca, N., Kramer, M., Elejalde, N. M, Wedge, D. E., Bernier, U. R, Coy, M., Becnel, J. J., Demirci, B., Başer, K. H. C., Zhang, J., & Zhang, S. (2011). Essential oils of Cupressus funebris, Juniperus communis, and J. chinensis (Cupressaceae) as repellents against ticks (Acari: Ixodidae) and mosquitoes (Diptera: Culicidae) and as toxicants against mosquitoes. Journal of Vector Ecology 36, 258–268. https://doi.org/10.1111/j.1948-7134.2011.00166.x
Cox-Georgian, D., Ramadoss, N., Dona, C., & Basu, C. (2019). Therapeutic and medicinal uses of terpenes. In Medicinal plants: from farm to pharmacy (pp. 333-359). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-31269-5_15
Dai, D. N., Thang, T. D., & Ogunwande, I. A. (2013). Terpene Composition of Three Species of Gymnosperms from Vietnam. American Journal of Plant Sciences 4, 2031-2038.
Hossain, M. F., Numan, S. M., Khan, S. S., Mahbub, S., & Akhtar, S. (2022). Human consumption, nutritional value and health benefits of Moringa (Moringa oleifera Lam.): a review. International Journal of Community Medicine and Public Health, 9(9), 3599-3604. https://dx.doi.org/10.18203/2394-6040.ijcmph20222229
El-Ghorab, A. H., Khaled, F. E., & Hamdy, A. S. (2007). Effect of drying on the chemical composition of the Egyptian Cupressus macrocarpa (Hartw.ex Gordon) essential oils and their biological characteristics. Journal of Essential Oil-Bearing Plants 10, 399-411. http://dx.doi.org/10.1080/0972060X.2007.10643573
Elyemni, M., Louaste, B., Nechad, I., Elkamli, T., Bouia, A., Taleb, M., Chaouch, M., & Eloutassi, N. (2019). Extraction of Essential Oils of Rosmarinus officinalis L. by Two Different Methods: Hydrodistillation and Microwave Assisted Hydrodistillation. The Scientific World Journal 2019, 1-6. https://doi.org/10.1155/2019/3659432
Emami, S. A., Khayyat, M.H., Rahimizadeh, M., FazlyBazzaz, B. S., & Assili, J. (2004). Chemical constituents of Cupressus sempervirens L. cv. Cereiformis essential oils,” Iranian Journal of Pharmaceutical Sciences 1, 39–42.
Fadel, H., Benayache, F., Chalchat, J. C., Figueredo, G., Chalard, P., Hazmoune, H., & Benayache, S. (2021). Essential Oil Constituents of Juniperus oxycedrus L. and Cupressus sempervirens L. (Cupressaceae) Growing in Aures Region of Algeria. Natura Product Research 35, 2616–2620.
Filho, F. C. S., Amaral, L. da S., & Rodrigues-filho, E. (2011). Composition of essential oils from Cupressus lusitanica and a Xylariaceous fungus found on its leaves. Biochemical Systematics and Ecology 39(4):485-490.
González-Burgos, E., & Gómez-Serranillos, M. P. (2012). Terpene compounds in nature: a review of their potential antioxidant activity. Current Medicinal Chemistry 19, 5319-5341. https://doi.org/10.2174/092986712803833335
Hall, G. S. (2015). Bailey & Scott’s diagnostic microbiology, 13th Edition, American Society for Clinical Pathology, Chicago.
Hassanpouraghdam, M. B. (2011). α-Pinene- and β-myrcene-rich volatile fruit oil of Cupressus arizonica Greene from northwest Iran. Natural Product Research 25, 634-639. https://doi.org/10.1080/14786419.2010.531479
Hosam, O., Elansary, Mohamed Z. M. Salem, Nader A. Ashmawy, & Mohamed M. Yacout. (2012). Chemical composition, antibacterial and antioxidant activities of leaves essential oils from Syzygium cumini L., Cupressus sempervirens L. and Lantana camara L. from Egypt. Journal of Agricultural Science 4, 144-152. http://dx.doi.org/10.5539/jas.v4n10p144
KABIRI, R. M., MOHAMMADI, S. M., & Kabirinasab, M. (2014). Biological effects of Arizona cypress, Cupressus arizonica against rice weevil, Sitophilus oryzae and sawtoothed grain beetle, Oryzaephilus surinamensis.
Larousse P. 2001. Encyclopédie des plantes médicinales: Identification, préparations, soins. Ed. Larousse, Londres, 14-29.
Loukis, A., Tsitsa-Tzardi, E., Kouladi, M., & Yuemei, M. (1991). Composition of the essential oil of Cupressus sempervirens L. cones from Greece. Journal of Essential Oil Research 3, 363–364.
Manimaran, S., Themozhil, S., Nanjan, M. J., & Suresh, B. (2007). Chemical composition and antimicrobial activity of cone volatile oil of Cupressus macrocarpa Hartwig from Nilgiris, India. Natural Product Sciences 13, 279-282.
Manivannan, R., Kumar, M. S., Jawahar, N., Ganesh, E. S., & Jubie, S. A. (2005). Comparative antimicrobial study on the essential oil of the leaves of various species of Cupressus. Ancient Science of Life, 24, 131–133.
Mazari, K., Bendimerad, N., Bekhechi, C., & Fernandez, X. (2010). Chemical composition and antimicrobial activity of essential oils isolated from Algerian Juniperus phoenicea L. and Cupressus L. Journal of Medicinal Plants Research, 4(10), 959–964
Milos, M., Radonic, A., & Mastelic, J. (2002). Seasonal variation in essential oil compositions of Cupressus sempervirens L. Journal of Essential Oil Research, 14(3), 222–223. https://doi.org/10.1080/10412905.2002.9699829
Nakatani, N. (1994). Antioxidative and antimicrobial constituents of herbs and spices. In G. Charalambous (Ed.), Spices, Herbs and Edible Fungi (pp. 251–271). Elsevier.
Nissen, L., Zatta, A., Stefanini, I., Grandi, S., Sgorbati, B., Biavati, B., & Monti, A. (2010). Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa L.). Fitoterapia, 81(5), 413–419. https://doi.org/10.1016/j.fitote.2009.11.010
Nouri, A. B., Dhifi, W., Bellili, S., Ghazghazi, H., Aouadhi, C., Chérif, A., Hammami, M., & Mnif, W. (2015). Chemical composition, antioxidant potential, and antibacterial activity of essential oil cones of Tunisian Cupressus sempervirens. Journal of Chemistry, 2015, 1–8. https://doi.org/10.1155/2015/538929
Nozohour, Y., Golmohammadi, R., Mirnejad, R., Moghaddam, M. M., & Fartashvand, M. (2019). Comparison of antibacterial activities of walnut (Juglans regia L.) and pine (Pinus halepensis Mill.) leaves alcoholic extracts against bacteria isolated from burn wound infections. Acta Microbiologica Hellenica, 64(2), 99–108.
Ramdani, M., Lograda, T., Chalard, P., Figueredo, G., Chalchat, J. C., & Zeraib, A. (2011). Essential oil variability in natural Hahadjerine population of Cupressus dupreziana in Tassili n’Ajjer (Algeria). Journal of Forestry Research, 1, 101. https://doi.org/10.4172/jfor.1000101
Riahi, L., Chograni, H., Ziadi, S., Zoghlami, N., & Mliki, A. (2012). Essential oils of Pinus brutia and Cupressus sempervirens from Tunisia: Chemical composition and antioxidant activity. Revue de la Société des Sciences Naturelles de Tunisie, 38, 55–60.
Russo, E. B. (2011). Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. British Journal of Pharmacology, 163(7), 1344–1364. https://doi.org/10.1111/j.1476-5381.2011.01238.x
Saad, A. M., Mohammed, M. M. D., Ghareeb, M. A., Ahmed, W. S., & Farid, M. A. (2017). Chemical composition and antimicrobial activity of the essential oil of the leaves of Cupressus macrocarpa Hartweg ex Gordon. Journal of Applied Pharmaceutical Science, 7(9), 207–212. https://doi.org/10.7324/JAPS.2017.70928
Sacchetti, G., Maietti, S., Muzzoli, M., Scaglianti, M., Manfredini, S., Radice, M., & Bruni, R. (2005). Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chemistry, 91(4), 621–632. https://doi.org/10.1016/j.foodchem.2004.06.031
Salem, M. Z. M., Elansary, H. O., & Ali, H. M. (2018). Bioactivity of essential oils extracted from leaves grown in Egypt. BMC Complementary and Alternative Medicine, 18, 23. https://doi.org/10.1186/s12906-018-2085-0
Selim, S. A., Adam, M. E., Hassan, S. M., & Albalawi, A. R. (2014). Chemical composition, antimicrobial and antibiofilm activity of the essential oil and methanol extract of the Mediterranean cypress (Cupressus sempervirens L.). BMC Complementary and Alternative Medicine, 14, 179. https://doi.org/10.1186/1472-6882-14-179
Shahbandeh, M., Eghdami, A., Moosazadeh Moghaddam, M., Jalali Nadoushan, M., Salimi, A., Fasihi-Ramandi, M., Mohammadi, S., Mirzaei, M., & Mirnejad, R. (2021). Conjugation of imipenem to silver nanoparticles for enhancement of its antibacterial activity against multidrug-resistant isolates of Pseudomonas aeruginosa. Journal of Biosciences, 46(1), 1–9.
Tognolini, M., Barocelli, E., & Ballabeni, V. (2006). Comparative screening of plant essential oils: Phenylpropanoid moiety as basic core for antiplatelet activity. Life Sciences, 78(13), 1419–1432. https://doi.org/10.1016/j.lfs.2005.07.020
Venditti, A., Maggi, F., Quassinti, L., Bramucci, M., Lupidi, G., Ornano, L., Ballero, M., Sanna, C., Bruno, M., & Rosselli, S. (2018). Bioactive constituents of Juniperus turbinata Guss. from La Maddalena Archipelago. Chem Biodiversity. 15(8):e1800148. https://doi.org/10.1002/cbdv.201800148