Anti-Serine/threonine-protein kinase-4 Potential of some Cannabis Extract compounds: In Silico Study

Document Type : Research Paper

Authors

Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran

Abstract

The increasing prevalence of diabetes is one of the most important health challenges worldwide. Serine/threonine-protein kinase-4 (STK4) is important in various cellular processes, with particularly in diabetes. Cannabis is a plant species that contains various medicinal compounds. This study aimed to examine whether the six compounds found in Cannabis extract can inhibit the STK4 protein that is present in diabetes. The crystallized structure (.pdb format) of Cannabis extract compounds were obtained from the PubChem database and used as ligands. Using the mm2 method, the ligand's structure was optimized. AutodockVina was employed to assess the ligand's effectiveness as an inhibitor against the active site of STK4 chain A and B. The results generated were analyzed and evaluated using Discovery Studio v16.1.0 software. Toxicity prediction of the best inhibitor was done by ProTox-II. The best affinity was obtained against 6YAT -chain A by -9.1 kcal/mol. The highest diversity of links was also reported in Ligand C with 6YAT -chain A. Hydrogen bonds established with 6YAT -chain A against Tyrosine: 104, Arginine: 245 and Phenylalanine: 244, indicating the effectiveness of delta(9)-Tetrahydrocannabinolic acid against chain A of 6YAT. Toxicity prediction showed that all pharmacokinetic parameters of ligand C molecule are in the acceptable range. Our study can provide valuable information about newly identified inhibitors for the treatment of diabetes. The findings of this study indicated that delta (9)-Tetrahydrocannabinolic acid molecule could be used as a novel STK4 inhibitor in the future studies.

Keywords

Main Subjects


Alber, M., Buganza Tepole, A., Cannon, W. R., De, S., Dura-Bernal, S., Garikipati, K., ... & Kuhl, E. (2019). Integrating machine learning and multiscale modeling—Perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. NPJ Digital Medicine, 2(1), 115. https://doi.org/10.1038/s41746-019-0193-y
Altumairah, M. A., & Choudhary, R. P. (2021). Overview on diabetes mellitus. Journal of Medical and Health Studies, 2(2), 63–69. https://doi.org/10.32996/jmhs.2021.2.2.7
Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318
Bata, N., Chaikuad, A., Bakas, N. A., Limpert, A. S., Lambert, L. J., Sheffler, D. J., ... & Cosford, N. D. (2021). STK4/MST1 have utility for the treatment of acute myeloid leukemia. Journal of Medicinal Chemistry, 65(2), 1352–1369. https://doi.org/10.1021/acs.jmedchem.1c00804
Brown, D., Watson, M., & Schloss, J. (2019). Pharmacological evidence of medicinal cannabis in oncology: A systematic review. Supportive Care in Cancer, 27, 3195–3207. https://doi.org/10.1007/s00520-019-04774-5
Cagdas, D., Halacli, S. O., Tan, C., Esenboga, S., Karaatmaca, B., Cetinkaya, P. G., ... & Tezcan, I. (2021). Diversity in serine/threonine protein kinase-4 deficiency and review of the literature. The Journal of Allergy and Clinical Immunology: In Practice, 9(10), 3752–3766. https://doi.org/10.1016/j.jaip.2021.05.032
Dedrick, S., Sundaresh, B., Huang, Q., Brady, C., Yoo, T., Cronin, C., ... & Altindis, E. (2020). The role of gut microbiota and environmental factors in type 1 diabetes pathogenesis. Frontiers in Endocrinology, 11, 78. https://doi.org/10.3389/fendo.2020.00078
Dettmer, R., Niwolik, I., Cirksena, K., Yoshimoto, T., Tang, Y., Mehmeti, I., ... & Naujok, O. (2022). Proinflammatory cytokines induce rapid, NO-independent apoptosis, expression of chemotactic mediators and interleukin-32 secretion in human pluripotent stem cell-derived beta cells. Diabetologia, 65(5), 829–843. https://doi.org/10.1007/s00125-022-05654-0
Doghish, A. S., Ismail, A., El-Mahdy, H. A., Elkady, M. A., Elrebehy, M. A., & Sallam, A. A. M. (2022). A review of the biological role of miRNAs in prostate cancer suppression and progression. International Journal of Biological Macromolecules, 197, 141–156. https://doi.org/10.1016/j.ijbiomac.2021.12.141
Donath, M. Y., Dinarello, C. A., & Mandrup-Poulsen, T. (2019). Targeting innate immune mediators in type 1 and type 2 diabetes. Nature Reviews Immunology, 19(12), 734–746. https://doi.org/10.1038/s41577-019-0213-9
Eizirik, D. L., Pasquali, L., & Cnop, M. (2020). Pancreatic β-cells in type 1 and type 2 diabetes mellitus: Different pathways to failure. Nature Reviews Endocrinology, 16(7), 349–362. https://doi.org/10.1038/s41574-020-0355-7
Fragoso, Y. D., Carra, A., & Macias, M. A. (2020). Cannabis and multiple sclerosis. Expert Review of Neurotherapeutics, 20(8), 849–854. https://doi.org/10.1080/14737175.2020.1776610
Magliano, D. J., Sacre, J. W., Harding, J. L., Gregg, E. W., Zimmet, P. Z., & Shaw, J. E. (2020). Young-onset type 2 diabetes mellitus—Implications for morbidity and mortality. Nature Reviews Endocrinology, 16(6), 321–331. https://doi.org/10.1038/s41574-020-0334-z
Misra, A., Gopalan, H., Jayawardena, R., Hills, A. P., Soares, M., Reza‐Albarrán, A. A., & Ramaiya, K. L. (2019). Diabetes in developing countries. Journal of Diabetes, 11(7), 522–539. https://doi.org/10.1111/1753-0407.12913
Moin, A. S. M., & Butler, A. E. (2019). Alterations in beta cell identity in type 1 and type 2 diabetes. Current Diabetes Reports, 19, 1–12. https://doi.org/10.3390/nu13051593
Morris, G. M., & Lim-Wilby, M. (2008). Molecular docking. In Molecular Modeling of Proteins (pp. 365–382). Springer. https://doi.org/10.1007/978-1-59745-177-2_19
Mukhtar, Y., Galalain, A., & Yunusa, U. (2020). A modern overview on diabetes mellitus: A chronic endocrine disorder. European Journal of Biology, 5(2), 1–14. https://doi.org/10.47672/ejb.409
Pérez‐Acevedo, A. P., Pacifici, R., Mannocchi, G., Gottardi, M., Poyatos, L., Papaseit, E., ... & Farré, M. (2021). Disposition of cannabinoids and their metabolites in serum, oral fluid, sweat patch and urine from healthy individuals treated with pharmaceutical preparations of medical cannabis. Phytotherapy Research, 35(3), 1646–1657. https://doi.org/10.1002/ptr.6931
Pombo, C. M., Iglesias, C., Sartages, M., & Zalvide, J. B. (2019). MST kinases and metabolism. Endocrinology, 160(5), 1111–1118. https://doi.org/10.1210/en.2018-00898
Radwan, M. M., Chandra, S., Gul, S., & ElSohly, M. A. (2021). Cannabinoids, phenolics, terpenes and alkaloids of cannabis. Molecules, 26(9), 2774. https://doi.org/10.3390/molecules26092774
Roep, B. O., Thomaidou, S., van Tienhoven, R., & Zaldumbide, A. (2021). Type 1 diabetes mellitus as a disease of the β-cell (do not blame the immune system?). Nature Reviews Endocrinology, 17(3), 150–161. https://doi.org/10.1038/s41574-020-00443-4
Russell, J. O., & Camargo, F. D. (2022). Hippo signalling in the liver: Role in development, regeneration and disease. Nature Reviews Gastroenterology & Hepatology, 19(5), 297–312. https://doi.org/10.1038/s41575-021-00571-w
SarveAhrabi, Y. (2021). Anti-Helicobacter pylori activity of new derivatives of 1,3,4-oxadiazole: In silico study. Avicenna Journal of Clinical Microbiology and Infection, 8(4), 135–138. https://doi.org/10.34172/ajcmi.2021.25
Wei, X., Huang, G., Liu, J., Ge, J., Zhang, W., & Mei, Z. (2023). An update on the role of Hippo signaling pathway in ischemia-associated central nervous system diseases. Biomedicine & Pharmacotherapy, 162, 114619. https://doi.org/10.1016/j.biopha.2023.114619
Whitticar, N. B., & Nunemaker, C. S. (2020). Reducing glucokinase activity to enhance insulin secretion: A counterintuitive theory to preserve cellular function and glucose homeostasis. Frontiers in Endocrinology, 11, 378. https://doi.org/10.3389/fendo.2020.00378
Ahrabi, N. Z., & SarveAhrabi, Y. (n.d.). Investigation of the interaction of some alkaloids derived from marine algae with human acetylcholinesterase: In silico study. Archives of Advances in Biosciences, 13(2), 1–9. https://doi.org/10.22037/aab.v13i2.38273
Zhang, Y., Han, S., Liu, C., Zheng, Y., Li, H., Gao, F., ... & Zhao, H. (2023). THADA inhibition in mice protects against type 2 diabetes mellitus by improving pancreatic β-cell function and preserving β-cell mass. Nature Communications, 14(1), 1020. https://doi.org/10.1038/s41467-023-36680-0