Comparative Analysis of Expressed sequence tags in Wheat, Rice, and Barley under Cold Stress

Document Type : Research Paper

Authors

1 Department of Plant Production and Genetics, Faculty of Agriculture, Zanjan University, Zanjan, Iranb) Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran

2 Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran

3 Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran

4 Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians University Munich, Germany

Abstract

Cold stress is an environmental factor limiting crop productivity and geographical distribution. To determine functional annotation and differential gene expressions of plants under cold stress, 3127, 1188, and 2292 expressed sequence tags (ESTs) from low temperature-treated rice, wheat, and barley seedlings, respectively, were analyzed. The ESTs from each library yielded 1995 (rice), 950 (wheat), and 1831 (barley) unigenes. BLASTX revealed 1458 (rice), 703 (wheat), and 1324 (barley) unigenes with important hits in the protein database of Arabidopsis. All the unigenes with significant hits were grouped with MapMan software. In the resulting three functional groups, photosynthesis, nucleotide metabolism, and signaling categories, a significant difference was observed between the transcripts of rice and barley under cold stress. We identified differentially expressed genes from the three plants under cold stress by assembling the ESTs, resulting in 1101 contigs. There were 12 genes identified that had significantly different expressions between the three libraries. Promoter analysis of a 1500-bp sequence upstream of the candidate genes' coding region showed various regulatory elements with different roles. The existence of elements involved in various stresses in the promoter regions of candidate genes confirmed the role of these genes in stress responses. The identified genes could be putative candidates for gene manipulation to improve the cold tolerance of valuable crop plants.

Keywords

Main Subjects


 
[1] Adam, S., & Murthy, S. D. S. (2014). Effect of cold stress on photosynthesis of plants and possible protection mechanisms. Approaches to plant stress and their management, 219-226. https://doi.org/10.3389/fpls.2018.01430
[2] Ali, Q., Ahsan, M., Tahir, M. H. N., Elahi, M., Farooq, J., & Waseem, M. (2011). Gene expression and functional genomic approach for abiotic stress tolerance in different crop species. IJAVMS, 2, 221-248.
[3] Allen, J. F., Bennett, J., Steinback, K. E., & Arntzen, C. J. (1981). Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature, 291(5810), 25-29. https://doi.org /10.1038/291025a0
[4] Banerjee, A., & Roychoudhury, A. (2019). Cold stress and photosynthesis. Photosynthesis, productivity and environmental stress, 27-37. https://doi.org/10.1002/9781119501800.ch2
[5] Banikamali, M., Soltanloo, H., Ramezanpour, S. S., Yamchi, A., & Sorahinobar, M. (2020). Identification of salinity responsive genes in lavender through cDNA-AFLP. Biotechnology Reports, 28, e00520. https://doi.org/10.1016/j.btre.2020.e00520
[6] Bennett, J., Steinback, K. E., & Arntzen, C. J. (1980). Chloroplast phosphoproteins: regulation of excitation energy transfer by phosphorylation of thylakoid membrane polypeptides. Proceedings of the National Academy of Sciences, 77(9), 5253-5257. https://doi.org/10.1073/pnas.77.9.5253
[7] Bray, E. A. (2002). Classification of genes differentially expressed during water‐deficit stress in Arabidopsis thaliana: an analysis using microarray and differential expression data. Annals of botany, 89(7), 803-811. https://doi.org/10.1093/aob/mcf104
[8] Brkljacic, J., Zhao, Q., & Meier, I. (2009). WPP-domain proteins mimic the activity of the
HSC70-1 chaperone in preventing mistargeting of RanGAP1-anchoring protein WIT1. Plant physiology, 151(1), 142-154. doi: https://doi.org/10.1104/pp.109.143404.
[9] Ciarmiello, L. F., Woodrow, P., Fuggi, A., Pontecorvo, G., & Carillo, P. (2011). Plant genes for abiotic stress. Abiotic stress in plants–mechanisms and adaptations, 283-308. https://doi.org/10.5772/22465.
[10] Catalá, R., Medina, J., & Salinas, J. (2011). Integration of low temperature and light signaling during cold acclimation response in Arabidopsis. Proceedings of the National Academy of Sciences, 108(39), 16475-16480. https://doi.org/10.1073/pnas.1107161108
[11] Clément, M., Leonhardt, N., Droillard, M. J., Reiter, I., Montillet, J. L., Genty, B., ... & Noël, L. D. (2011). The cytosolic/nuclear HSC70 and HSP90 molecular chaperones are important for stomatal closure and modulate abscisic acid-dependent physiological responses in Arabidopsis. Plant physiology, 156(3), 1481-1492. https://doi.org/10.1104/pp.111.174425
[12] Cruz, R. P. d., Sperotto, R. A., Cargnelutti, D., Adamski, J. M., de FreitasTerra, T., & Fett, J. P. (2013). Avoiding damage and achieving cold tolerance in rice plants. Food and energy security, 2(2), 96-119. https://doi.org/10.1002/fes3.25
[13] Cui, S., Huang, F., Wang, J., Ma, X., Cheng, Y., & Liu, J. (2005). A proteomic analysis of cold stress responses in rice seedlings. Proteomics, 5(12), 3162-3172. https://doi.org/10.1002/pmic.200401148.
[14] Edrisi, M. K., Samizadeh, L. H., Sohani, M. M., & Hassani, H. (2013). Expression analysis of cold-induced transcription factor genes in rice (Oryza sativa L.), 19-24. http://dx.doi.org/10.22092/cbj.2013.100446.
[15] Feierabend, J., Schaan, C., & Hertwig, B. (1992). Photoinactivation of catalase occurs under both high-and low-temperature stress conditions and accompanies photoinhibition of photosystem II. Plant Physiology, 100(3), 1554-1561. https://doi.org/10.1104/pp.100.3.1554
[16] Ghosh, D., & Xu, J. (2014). Abiotic stress responses in plant roots: a proteomics perspective. Frontiers in plant science, 5, 6. https://doi.org/10.3389/fpls.2014.00006
[17] Guo WJ, Meetam M, Goldsbrough PB. (2008) Examining the specific contributions of individual Arabidopsis metallothioneins to copper distribution and metal tolerance. Plant Physiol 146: 1697–1706 https://doi.org/10.1104/pp.108.115782
[18] Guo, X., Liu, D., & Chong, K. (2018). Cold signaling in plants: Insights into mechanisms and regulation. Journal of integrative plant biology, 60(9), 745-756. https://doi.org/10.1111/jipb.12706
[19] Han, Q. H., Huang, B., Ding, C. B., Zhang, Z. W., Chen, Y. E., Hu, C., ... & Yuan, M. (2017). Effects of melatonin on anti-oxidative systems and photosystem II in cold-stressed rice seedlings. Frontiers in Plant Science, 8, 785. https://doi.org/10.3389/fpls.2017.00785
[20] Hashimoto, M., & Komatsu, S. (2007). Proteomic analysis of rice seedlings during cold stress. Proteomics, 7(8), 1293-1302. https://doi.org/10.1002/pmic.200600921
[21] Hofmann, N. R. (2012). Alternative splicing links the circadian clock to cold tolerance. https://doi.org/10.1105%2Ftpc.112.240611
[22] Huang, W., Zhang, S. B., & Cao, K. F. (2010). The different effects of chilling stress under moderate light intensity on photosystem II compared with photosystem I and subsequent recovery in tropical tree species. Photosynthesis Research, 103, 175-182. https://doi.org/10.1007/s11120-010-9539-7
[23] Huang, W., Zhang, S. B., & Liu, T. (2018). Moderate photoinhibition of photosystem II significantly affects linear electron flow in the shade-demanding plant Panax notoginseng. Frontiers in Plant Science, 9, 637. https://doi.org/10.3389/fpls.2018.00637
[24] Jagodzik, P., Tajdel-Zielinska, M., Ciesla, A., Marczak, M., & Ludwikow, A. (2018). Mitogen-activated protein kinase cascades in plant hormone signaling. Frontiers in plant science, 9, 1387. https://doi.org/10.3389/fpls.2018.01387
[25] Ji, L., Zhou, P., Zhu, Y., Liu, F., Li, R., & Qiu, Y. (2017). Proteomic analysis of Rice seedlings under cold stress. The protein journal, 36, 299-307. https://doi.org/10.1002/pmic.200600921
[26] Jian, H, Xie, L., Wang, Y., Cao, Y., Wan, M., Lv, D., Li, J., Lu, K., Xu, X., Liu, L., (2020). Characterization of cold stress responses in different rapeseed ecotypes based on metabolomics and transcriptomics analyses. 31; 8:e8704. doi: 10.7717/peerj.8704. PMID: 32266113; PMCID: PMC7120054.
[27] Jin, Y.-M., Piao, R., Yan, Y.-F., Chen, M., Wang, L., He, H., Liu, X., GAO, X.-A., Jiang, W., & Lin, X.-F. (2018). Overexpression of a new zinc finger protein transcription factor OsCTZFP8 improves cold tolerance in rice. International journal of genomics, 2018. https://doi.org/10.1155/2018/5480617
[28] Kawamura, Y., & Uemura, M. (2003). Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. The Plant Journal, 36(2), 141-154. https://doi.org/10.1046/j.1365-313x.2003.01864.x
[29] Kayesh, E., Bilkish, N., Liu, G. S., Chen, W., Leng, X. P., & Fang, J. G. (2014). Characterization of EST-derived and non-EST simple sequence repeats in an F. Genetics and Molecular Research, 13(1), 2220-2230. https://doi.org/10.4238/2014.march.31.2
[30] Kim, J. Y., Park, S. J., Jang, B., Jung, C. H., Ahn, S. J., Goh, C. H., ... & Kang, H. (2007). Functional characterization of a glycine‐rich RNA‐binding protein 2 in Arabidopsis thaliana under abiotic stress conditions. The Plant Journal, 50(3), 439-451. https://doi.org/10.1111/j.1365-313X.2007.03057.x
[31] Kollist, H., Zandalinas, S. I., Sengupta, S., Nuhkat, M., Kangasjärvi, J., & Mittler, R. (2019). Rapid responses to abiotic stress: priming the landscape for the signal transduction network. Trends in plant science, 24(1), 25-37. https://doi.org/10.1016/j.tplants.2018.10.003
[32] Lee, D. G., Ahsan, N., Lee, S. H., Lee, J. J., Bahk, J. D., Kang, K. Y., & Lee, B. H. (2009). Chilling stress-induced proteomic changes in rice roots. Journal of plant physiology, 166(1), 1-11. https://doi.org/10.1016/j.jplph.2008.02.001
[33] Lee, M. (2001). Low temperature tolerance in rice: the Korean experience. Increased lowland rice production in the Mekong Region: Proceedings of an International Workshop held in Vientiane, Laos, and 30 October-2 November 2000.
[34] Leterrier, M., Leterrier, M., Del Río, L. A., & Corpas, F. J. (2007). Cytosolic NADP-isocitrate dehydrogenase of pea plants: genomic clone characterization and functional analysis under abiotic stress conditions. Free Radical Research, 41(2), 191-199. https://doi.org/10.1080/10715760601034055
[35] Li, L., Han, C., Yang, J., Tian, Z., Jiang, R., Yang, F., Jiao, K., Qi, M., Liu, L., & Zhang, B. (2023). Comprehensive Transcriptome Analysis of Responses during Cold Stress in Wheat (Triticum aestivum L.). Genes, 14(4), 844. https://doi.org/10.3390/genes14040844
[36] Liang, Y., Chen, H., Tang, M. J., Yang, P. F., & Shen, S. H. (2007). Responses of Jatropha curcas seedlings to cold stress: photosynthesis‐related proteins and chlorophyll fluorescence characteristics. Physiologia Plantarum, 131(3), 508-517. https://doi.org/10.1111/j.1399-3054.2007.00974.x
[37] Liu, Y., Hu, W., Murakawa, Y., Yin, J., Wang, G., Landthaler, M., & Yan, J. (2013). Cold-induced RNA-binding proteins regulate circadian gene expression by controlling alternative polyadenylation. Scientific reports, 3(1), 1-11. http://dx.doi.org/10.1038/srep02054
[38] Maibam, P., Nawkar, G. M., Park, J. H., Sahi, V. P., Lee, S. Y., & Kang, C. H. (2013). The influence of light quality, circadian rhythm, and photoperiod on the CBF-mediated freezing tolerance. International journal of molecular sciences, 14(6), 11527-11543. https://doi.org/10.3390/ijms140611527
[39] Masoudi-Nejad, A., Tonomura, K., Kawashima, S., Moriya, Y., Suzuki, M., Itoh, M., Kanehisa, M., Endo, T., Goto, S. (2006). EGassembler: Online bioinformatics service for large-scale processing, clustering and assembling ESTs and genomic DNA fragments. Nucleic Acids Res. 34, W459–W462. https://doi.org/10.1093/nar/gkl066
[40] Mondego, J., Vidal, R. O., Carazzolle, M. F., Tokuda, E. K., Parizzi, L. P., Costa, G. G., ... & Pereira, G. A. (2011). An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea
canephora. BMC plant biology, 11(1), 1-23. https://doi.org/10.1186/1471-2229-11-30
[41] Murata, N., Takahashi, S., Nishiyama, Y., & Allakhverdiev, S. I. (2007). Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1767(6), 414-421. https://doi.org/10.1016/j.bbabio.2006.11.019
[42] Noel, L. D., Cagna, G., Stuttmann, J., Wirthmuller, L., Betsuyaku, S., Witte, C. P., & Parker, J. E. (2007). Interaction between SGT1 and cytosolic/nuclear HSC70 chaperones regulates Arabidopsis immune responses. The Plant Cell, 19(12), 4061-4076. https://doi.org/10.1105/tpc.107.051896
[43] Pirzadah, T. B., Malik, B., Salam, S. T., Ahmad Dar, P., & Rashid, S. (2019). Impact of heavy metal stress on plants and the role of various defense elements. Iranian Journal of Plant Physiology, 9(4), 2883-2900. https://doi.org/10.30495/IJPP.2019.668855
[44] Ritonga, F. N., & Chen, S. (2020). Physiological and molecular mechanism involved in cold stress tolerance in plants. Plants, 9(5), 560. https://doi.org/10.3390%2Fplants9050560
[45] Skipsey, M., Andrews, C. J., Townson, J. K., Jepson, I., & Edwards, R. (1997). Substrate and thiol specificity of a stress-inducible glutathione transferase from soybean. FEBS letters, 409(3), 370-374. https://doi.org/10.1016/s0014-5793(97)00554-1
[46] Sorahinobar, M., Safaie, N., & Moradi, B. (2022). Salicylic Acid Seed Priming Enhanced Resistance in Wheat against Fusarium graminearum Seedling Blight. Journal of Plant Biology, 1-12. https://doi.org/10.1007/s12374-021-09329-y
[47] Stasolla, C., Katahira, R., Thorpe, T.A., Ashihara, H. (2003) Purine and pyrimidine nucleotide metabolism in higher plants. J. Plant Physiol. 160:1271–1295. doi: 10.1078/0176-1617-01169. https://doi.org/10.1034/j.1399-3054.2003.00030.x
[48] Sun, S., Fang, J., Lin M, Hu. C., Qi, X, Chen J., Zhong Y., Muhammad A., Li, Z., and Li, Y., (2021). Comparative Metabolomic and Transcriptomic Studies Reveal Key Metabolism Pathways Contributing to Freezing Tolerance Under Cold Stress in Kiwifruit. Front. Plant Sci. 12:628969. doi: 10.3389/fpls.2021.628969
[49] Sung, D. Y., & Guy, C. L. (2003). Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis. Evidence for pleiotropic consequences. Plant Physiology, 132(2), 979-987. https://doi.org/10.1104/pp.102.019398
[50] Tikkanen, M., Mekala, N. R., & Aro, E. M. (2014). Photosystem II photoinhibition-repair cycle protects Photosystem I from irreversible damage. Biochimica ET Biophysica Acta (BBA)-Bioenergetics, 1837(1), 210-215. https://doi.org/10.1016/j.bbabio.2013.10.001
[51] Wang, X., Xu, M., GAO, C., Zeng, Y., Cui, Y., Shen, W., & Jiang, L. (2020). The roles of endomembrane trafficking in plant abiotic stress responses. Journal of integrative plant biology, 62(1), 55-69. https://doi.org/10.1111/jipb.12895
[52] Wen, J. Q., Oono, K., & Imai, R. (2002). Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice. Plant physiology, 129(4), 1880-1891. doi: 10.1104/pp.006072
[53] Wollman, F. A. (2001). State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. The EMBO journal, 20(14), 3623-3630. https://doi.org/10.1093/emboj/20.14.3623
[54] Yang, L., Lei, L., Li, P., Wang, J., Wang, C., Yang, F., Chen, J., Liu, H., Zheng, H., & Xin, W. (2021). Identification of candidate genes conferring cold tolerance to rice (Oryza sativa L.) at the bud-bursting stage using bulk segregant analysis sequencing and linkage mapping. Frontiers in Plant Science, 12, 647239. https://doi.org/10.3389/fpls.2021.647239
[55] Zhang, Q., Chen, Q., Wang, S., Hong, Y., & Wang, Z. (2014). Rice and cold stress: methods for its evaluation and summary of cold tolerance-related quantitative trait loci. Rice, 7(1), 1-12. doi: 10.1186/s12284-014-0024-3
[56] Zhang, Z., Li, J., Pan, Y., Li, J., Zhou, L., Shi, H., & Li, Z. (2017). Natural variation in CTB4a enhances rice adaptation to cold habitats. Nature communications, 8(1), 14788.
[57] Zhao, Y., Han, Q., Ding, C., Huang, Y., Liao, J., Chen, T., & Yuan, M. (2020). Effect of
low temperature on chlorophyll biosynthesis and chloroplast biogenesis of rice seedlings during greening. International journal of molecular sciences, 21(4), 1390. https://doi.org/10.3390/ijms21041390
[58] Zhu W, Zhao D, Miao Q, Xue T, Li X, Zheng C. (2009) Arabidopsis thaliana metallothionein, AtMT2a, mediates ROS balance during oxidative stress. J Plant Biol 52: 585–592. doi:10.1007/s12374-009-9076-0