[1] Abbas, F., Ke, Y., Yu, R., Yue, Y., Amanullah, S., Jahangir, M. M., & Fan, Y. (2017). Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta, 246, 803-816. doi.org/10.1007/s00425-017-2749-x.
[2] Abdi, G., Shokrpour, M. & Salami, S.A. (2019) Essential oil composition at different plant growth development of peppermint (Mentha x piperita L.) under water deficit stress. Journal of Essential Oil Bearing Plants, 22(2), 431-440. doi.org/10.1080/0972060X.2019.1581095.
[3] Açikgöz, M. A., & Kara, Ş. M. (2020). Morphogenetic, ontogenetic and diurnal variability in content and constituents of bitter fennel (Foeniculum vulgare Miller var. vulgare) essential oil. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(1), 127-134. doi.org/10.18016/ksutarimdoga.vi.596542.
[4] Arabacı, O., Tokul, H. E., Öğretmen, N. G., & Bayram, E. (2015). The effect of diurnal variability on yield and quality in naturally grown Coridothymus capitatus L. genotypes. Ege Üniversitesi Ziraat Fakültesi Dergisi, 52(2), 141-150.
[5] Ascensão, L., Marques, N., & Pais, M. S. (1995). Glandular trichomes on vegetative and reproductive organs of Leonotis leonurus (Lamiaceae). Annals of Botany, 75(6), 619-626. http://www.jstor.org/stable/42761776.
[6] Atsbaha Zebelo, S., Bertea, C. M., Bossi, S., Occhipinti, A., Gnavi, G., & Maffei, M. E. (2011). Chrysolina herbacea modulates terpenoid biosynthesis of Mentha aquatica L. PLoS One, 6(3), e17195. doi.org/10.1371/journal.pone.0017195.
[7] Badi, H. N., Yazdani, D., Ali, S. M., & Nazari, F. (2004). Effects of spacing and harvesting time on herbage yield and quality/quantity of oil in thyme, Thymus vulgaris L. Industrial crops and products, 19(3), 231-236. doi:10.1016/j.indcrop.2003.10.005
[8] Baser, K. H. C., & Buchbauer, G. (2009). Handbook of essential oils: science, technology, and applications. CRC press. doi.org/10.1201/9781420063165.
[9] Broun, P., Liu, Y., Queen, E., Schwarz, Y., Abenes, M. L., & Leibman, M. (2006). Importance of transcription factors in the regulation of plant secondary metabolism and their relevance to the control of terpenoid accumulation. Phytochemistry Reviews, 5, 27-38. doi.org/10.1007/s11101-006-9000-x.
[10] Burke, C. C., Wildung, M. R., & Croteau, R. (1999). Geranyl diphosphate synthase: cloning, expression, and characterization of this prenyltransferase as a heterodimer. Proceedings of the National Academy of Sciences, 96(23), 13062-13067. doi.org/10.1073/pnas.96.23.13062.
[11] Cai, Y., Jia, J. W., Crock, J., Lin, Z. X., Chen, X. Y., & Croteau, R. (2002). A cDNA clone for β-caryophyllene synthase from Artemisia annua. Phytochemistry, 61(5), 523-529. doi.org/10.1016/S0031-9422(02)00265-0.
[12] Carretero-Paulet, L., Cairó, A., Talavera, D., Saura, A., Imperial, S., Rodríguez-Concepción, M., ... & Boronat, A. (2013). Functional and evolutionary analysis of DXL1, a
non-essential gene encoding a 1-deoxy-D-xylulose 5-phosphate synthase like protein in Arabidopsis thaliana. Gene, 524(1), 40-53. doi.org/10.1016/j.gene.2012.10.071.
[13] Croteau, R., Felton, M., Karp, F., & Kjonaas, R. (1981). Relationship of camphor biosynthesis to leaf development in sage (Salvia officinalis). Plant Physiology, 67(4), 820-824. doi:10.1104/pp.67.4.820.
[14] Daghbouche, S., Ammar, I., Rekik, D.M., Djazouli, Z.E., Zebib, B. & Merah, O. (2020) Effect of phenological stages on essential oil composition of Cytisus triflorus L’Her. Journal of King Saud University-Science, 32(4), 2383-2387. doi.org/10.1016/j.jksus.2020.03.020.
[15] Demura, T., & Ye, Z. H. (2010). Regulation of plant biomass production. Current opinion in plant biology, 13(3), 298-303. doi.org/10.1016/j.pbi.2010.03.002.
[16] Dhifi, W., Litaiem, M., Jelali, N., Hamdi, N., & Mnif, W. (2011). Identification of a new chemotye of the plant Mentha aquatica grown in Tunisia: chemical composition, antioxidant and biological activities of its essential oil. Journal of Essential Oil Bearing Plants, 14(3), 320-328. doi:10.1080/0972060X.2011.10643941.
[17] Dudareva, N., Klempien, A., Muhlemann, J. K., & Kaplan, I. (2013). Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 198(1), 16-32. doi.org/10.1111/nph.12145.
[18] Farzadfar, S., Zarinkamar, F., Modarres-Sanavy, S. A. M., & Hojati, M. (2013). Exogenously applied calcium alleviates cadmium toxicity in Matricaria chamomilla L. plants. Environmental Science and Pollution Research, 20, 1413-1422. doi:10.1007/s11356-012-1181-9.
[19] Figueiredo, A. C., Barroso, J. G., Pedro, L. G., & Scheffer, J. J. (2008). Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour and Fragrance journal, 23(4), 213-226. doi.org/10.1002/ffj.1875.
[20] Harley, R. M. (2004). Labiatae. Flowering Plants Dicotyledons 167–275. doi.org/10.1007/978-3-642-18617-2.
[21] Hassanpouraghdam, M. B., Mohammadzadeh, A., Morshedloo, M. R., Asadi, M., Rasouli, F., Vojodi Mehrabani, L., & Najda, A. (2022). Mentha aquatica L. Populations from the Hyrcanian Hotspot: Volatile Oil Profiles and Morphological Diversity. Agronomy, 12(10), 2277. doi.org/10.3390/agronomy12102277.
[22] Jiang, S. Y., Jin, J., Sarojam, R., & Ramachandran, S. (2019). A comprehensive survey on the terpene synthase gene family provides new insight into its evolutionary patterns. Genome biology and evolution, 11(8), 2078-2098. doi:10.1093/gbe/evz142.
[23] Kahraman, A., Celep, F., & Dogan, M. (2010). Anatomy, trichome morphology and palynology of Salvia chrysophylla Stapf (Lamiaceae). South African Journal of Botany, 76(2), 187-195. doi.org/10.1016/j.sajb.2009.10.003.
[24] Lu, X., Zhang, L., Zhang, F., Jiang, W., Shen, Q., Zhang, L., ... & Tang, K. (2013). A a ORA, a trichome‐specific AP 2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytologist, 198(4), 1191-1202. doi:10.1111/nph.12207.
[25] Mallavarapu, G. R., Kulkarni, R. N., Baskaran, K., Rao, L., & Ramesh, S. (1999). Influence of plant growth stage on the essential oil content and composition in Davana (Artemisia pallens Wall.). Journal of agricultural and food chemistry, 47(1), 254-258. doi:10.1021/jf980624c.
[26] McGarvey, D. J., & Croteau, R. (1995). Terpenoid metabolism. The plant cell, 7(7), 1015. doi:10.1105/tpc.7.7.1015.
[27] Nazari, M., Zarinkamar, F., & Soltani, B. M. (2017). Physiological, biochemical and molecular responses of Mentha aquatica L. to manganese. Plant Physiology and Biochemistry, 120, 202-212. doi.org/10.1016/j.plaphy.2017.08.003.
[28] [28] Nazari, M., Zarinkamar, F., Soltani, B. M., & Niknam, V. (2018). Manganese-induced changes in glandular trichomes density and essential oils production of Mentha aquatica L. at different growth stages. Journal of Trace Elements in Medicine and Biology, 50, 57-66. doi:10.1016/j.plaphy.2017.08.003.
[29] [29] Oliveira, M. J., Campos, I. F., Oliveira, C. B., Santos, M. R., Souza, P. S., Santos, S. C., ... & Ferri, P. H. (2005). Influence of growth phase on the essential oil composition of Hyptis suaveolens. Biochemical Systematics and Ecology, 33(3), 275-285.
[30] [30] Özyazici, G., & Kevseroğlu, K. (2019). Effects of ontogenetic variability on yield of some Labiatae family (Mentha spicata L., Origanum onites L., Melissa officinalis L., Lavandula angustifolia Mill.) plants. doi.org/10.19159/tutad.594468.
[31] [31] Picazo-Aragonés, J., Terrab, A., & Balao, F. (2020). Plant volatile organic compounds evolution: transcriptional regulation, epigenetics and polyploidy. International Journal of Molecular Sciences, 21(23), 8956. doi:10.3390/ijms21238956.
[32] [32] Querol, J., Grosdemange-Billiard, C., Rohmer, M., Boronat, A., & Imperial, S. (2002). Enzymatic synthesis of 1-deoxysugar-phosphates using E. coli 1-deoxy-d-xylulose 5-phosphate synthase. Tetrahedron letters, 43(46), 8265-8268. doi.org/10.1021/jo971933p.
[33] [33] Raja, R. R. (2012). Medicinally potential plants of Labiatae (Lamiaceae) family: an overview. Research journal of medicinal plant, 6(3), 203-213. doi:10.3923/rjmp.2012.203.213.
[34] [34] Sellami, I. H., Maamouri, E., Chahed, T., Wannes, W. A., Kchouk, M. E., & Marzouk, B. (2009). Effect of growth stage on the content and composition of the essential oil and phenolic fraction of sweet marjoram (Origanum majorana L.). Industrial Crops and Products, 30(3), 395-402. doi.org/10.1016/j.indcrop.2009.07.010.
[35] [35] Singh, N., Luthra, R., & Sangwan, R. S. (1989). Effect of leaf position and age on the essential oil quantity and quality in lemongrass (Cymbopogon flexuosus) 1. Planta medica, 55(03), 254-256. doi:10.1055/s-2006-961997.
[36] [36] Talebi, S. M., Mahdiyeh, M., Nohooji, M. G., & Akhani, M. (2018). Analysis of trichome morphology and density in Salvia nemorosa L.(Lamiaceae) of Iran. Botanica, 24(1), 49-58.
[37] [37] Turner, G. W., Gershenzon, J., & Croteau, R. B. (2000). Development of peltate glandular trichomes of peppermint. Plant physiology, 124(2), 665-680. doi.org/10.1104/pp.124.2.665.
[38] Ueoka, H., Sasaki, K., Miyawaki, T., Ichino, T., Tatsumi, K., Suzuki, S., ... & Yazaki, K. (2020). A cytosol-localized geranyl diphosphate synthase from Lithospermum erythrorhizon and its molecular evolution. Plant Physiology, 182(4), 1933-1945. doi.org/10.1104/pp.19.00999.
[39] Uritu, C. M., Mihai, C. T., Stanciu, G. D., Dodi, G., Alexa-Stratulat, T., Luca, A., ... & Tamba, B. I. (2018). Medicinal plants of the family Lamiaceae in pain therapy: A review. Pain Research and Management, 2018. doi.org/10.1155/2018/7801543.
[40] Uyanık, M., & Gürbüz, B. (2015). Effect of ontogenetic variability on essential oil content and its composition in lemon balm (Melissa officinalis L.). Tekirdağ Ziraat Fakültesi Dergisi, 12, 91-96.
[41] Verma, R. S., Padalia, R. C., Verma, S. K., Chauhan, A., & Darokar, M. P. (2014). The essential oil of'bhang'(Cannabis sativa L.) for non-narcotic applications. Current Science, 645-650. doi:10.18520/CS/V107/I4/645-650.
[42] Vuerich, M., Ferfuia, C., Zuliani, F., Piani, B., Sepulcri, A., & Baldini, M. (2019). Yield and quality of essential oils in hemp varieties in different environments. Agronomy, 9(7), 356. doi.org/10.3390/agronomy9070356.
[43] Wagner, G. J. (1991). Secreting glandular trichomes: more than just hairs. Plant physiology, 96(3), 675-679. doi:10.1104/pp.96.3.675.
[44] Werker, E. (1993). Function of essential oil‐secreting glandular hairs in aromatic plans of Lamiacea—a review. Flavour and fragrance journal, 8(5), 249-255. doi.org/10.1002/ffj.2730080503.
[45] Yadav, R. K., Sangwan, R. S., Sabir, F., Srivastava, A. K., & Sangwan, N. S. (2014). Effect of prolonged water stress on specialized secondary metabolites, peltate glandular trichomes, and pathway gene expression in Artemisia annua L. Plant physiology and biochemistry, 74, 70-83. doi:10.1016/j.plaphy.2013.10.023.
[46] Yang, L., Wen, K. S., Ruan, X., Zhao, Y. X., Wei, F., & Wang, Q. (2018). Response of plant secondary metabolites to environmental factors. Molecules, 23(4), 762. doi:10.3390/molecules23040762.
[47] Yeşil, M., & Özcan, M. M. (2021). Effects of harvest stage and diurnal variability on yield and essential oil content in Mentha× piperita L. Plant, Soil and Environment, 67(7), 417-423. do oi.org/10.17221/114/2021-PSE.
[48] Yousefzadeh, K., Houshmand, S., Shiran, B., Mousavi-Fard, S., Zeinali, H., Nikoloudakis, N., ... & Fanourakis, D. (2022). Joint effects of developmental stage and water deficit on essential oil traits (content, yield, composition) and elated gene expression: A case study in two Thymus species. Agronomy, 12(5), 1008. doi.org/10.3390/agronomy12051008.
[49] Zandalinas, S.I., Sales, C., Beltrán, J., Gómez-Cadenas, A. & Arbona, V. (2017) Activation of secondary metabolism in citrus plants is associated to sensitivity to combined drought and high temperatures. Frontiers in plant science, 7, 1954. doi.org/10.3389/fpls.2016.01954.
[50] Zarinkamar, F., Ghannadnia, M., & Haddad, R. (2012). Limonene synthase gene expression under different concentrations of manganese in Cuminum cyminum L. African Journal of Plant Science, 6(6), 203-212. doi:10.5897/JMPR11.195.
[51] Zhang, X., Guan, H., Dai, Z., Guo, J., Shen, Y., Cui, G., ... & Huang, L. (2015). Functional analysis of the isopentenyl diphosphate isomerase of Salvia miltiorrhiza via color complementation and RNA interference. Molecules, 20(11), 20206-20218. doi:10.3390/molecules201119689.
[52] Zhang, S., Ding, G., He, W., Liu, K., Luo, Y., Tang, J., & He, N. (2020). Functional characterization of the 1-deoxy-D-xylulose 5-phosphate synthase genes in Morus notabilis. Frontiers in Plant Science, 11, 1142. doi.org/10.3389/fpls.2020.01142.
[53] Zhao, Y., Chen, Y., Gao, M., Yin, H., Wu, L., & Wang, Y. (2020). Overexpression of geranyl diphosphate synthase small subunit 1 (LcGPPS. SSU1) enhances the monoterpene content and biomass. Industrial Crops and Products, 143, 1. doi.org/10.1016/j.indcrop.2019.111926.