Effects of growth stage on essential oils and gene expression of terpene synthases in Mentha aquatica L.

Document Type : Research Paper

Authors

1 Department of Plant Biology, Faculty of basic sciences, Tarbiat Modares University, Tehran, Iran

2 Department of Plant Biology, School of Biology, College of Science, University of Tehran, Tehran 14155, Iran

Abstract

In this work, the impact of different stages of plant growth on the composition of essential oils, the density of glandular trichomes, and gene expression of enzymes involved in terpenes production in Mentha aquatica were investigated. Our experiment was performed on 15-day-old plants (the initial stage of vegetative growth) and 45-day-old plants (the late stage of vegetative growth). Based on our investigation, the leaves of the M. aquatica plant were covered by non-glandular and glandular trichomes in the two growth stages. The density of glandular trichomes as the location of storage and biosynthesis of essential oils was higher in the late growth stage than in the early growth stage. The maximum harvest of essential oils was achieved at the late vegetative stage, representing that the generation of essential oils was boosted as the age of plants increased. Moreover, the growth stage influenced the essential oils composition in the M. aquatica plant. The main compounds of essential oils from M. aquatica plants in the early growth stage were menthofuran, limonene, germacrene D, pinene, viridiflorol, 1-terpinene, ledene, cymene, 3-carvon, terpinene, and cis-ocimene. The top compounds exit in the essential oils obtained from M. aquatica plants in the late vegetative stage were as follows: caryophyllene, cubebene, camphene, gurjunene, humulene, bicyclogermacrene, sabinene, 1-pinene, D-nerolidol, farnesene, 1,8-cineole, and cadinene. The ratio of sesquiterpenes to monoterpenes was enhanced as the plants developed. The expression level of the gene encoding enzymes that contributed to terpenoid production includes 1-Deoxy d-xylulose-5-phosphate synthase, geranyl diphosphate synthase, limonene synthase, isopentenyl diphosphate isomerase, and menthofuran synthase, which were also enhanced in the late growth stage. Gene expression studies supported our findings and demonstrated that the increased production of essential oils might be due to the stimulation of enzyme activity, contributing to their biosynthesis pathway. Overall, to obtain the maximum amount of essential oils, the late vegetative stage of M. aquatic is recommended.

Keywords

Main Subjects


 
[1] Abbas, F., Ke, Y., Yu, R., Yue, Y., Amanullah, S., Jahangir, M. M., & Fan, Y. (2017). Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta, 246, 803-816. doi.org/10.1007/s00425-017-2749-x.
[2] Abdi, G., Shokrpour, M. & Salami, S.A. (2019) Essential oil composition at different plant growth development of peppermint (Mentha x piperita L.) under water deficit stress. Journal of Essential Oil Bearing Plants, 22(2), 431-440. doi.org/10.1080/0972060X.2019.1581095.
[3] Açikgöz, M. A., & Kara, Ş. M. (2020). Morphogenetic, ontogenetic and diurnal variability in content and constituents of bitter fennel (Foeniculum vulgare Miller var. vulgare) essential oil. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 23(1), 127-134. doi.org/10.18016/ksutarimdoga.vi.596542.
[4] Arabacı, O., Tokul, H. E., Öğretmen, N. G., & Bayram, E. (2015). The effect of diurnal variability on yield and quality in naturally grown Coridothymus capitatus L. genotypes. Ege Üniversitesi Ziraat Fakültesi Dergisi, 52(2), 141-150.
[5] Ascensão, L., Marques, N., & Pais, M. S. (1995). Glandular trichomes on vegetative and reproductive organs of Leonotis leonurus (Lamiaceae). Annals of Botany, 75(6), 619-626. http://www.jstor.org/stable/42761776.
[6] Atsbaha Zebelo, S., Bertea, C. M., Bossi, S., Occhipinti, A., Gnavi, G., & Maffei, M. E. (2011). Chrysolina herbacea modulates terpenoid biosynthesis of Mentha aquatica L. PLoS One, 6(3), e17195. doi.org/10.1371/journal.pone.0017195.
[7] Badi, H. N., Yazdani, D., Ali, S. M., & Nazari, F. (2004). Effects of spacing and harvesting time on herbage yield and quality/quantity of oil in thyme, Thymus vulgaris L. Industrial crops and products, 19(3), 231-236. doi:10.1016/j.indcrop.2003.10.005
[8] Baser, K. H. C., & Buchbauer, G. (2009). Handbook of essential oils: science, technology, and applications. CRC press. doi.org/10.1201/9781420063165.
[9] Broun, P., Liu, Y., Queen, E., Schwarz, Y., Abenes, M. L., & Leibman, M. (2006). Importance of transcription factors in the regulation of plant secondary metabolism and their relevance to the control of terpenoid accumulation. Phytochemistry Reviews, 5, 27-38. doi.org/10.1007/s11101-006-9000-x.
[10] Burke, C. C., Wildung, M. R., & Croteau, R. (1999). Geranyl diphosphate synthase: cloning, expression, and characterization of this prenyltransferase as a heterodimer. Proceedings of the National Academy of Sciences, 96(23), 13062-13067. doi.org/10.1073/pnas.96.23.13062.
[11] Cai, Y., Jia, J. W., Crock, J., Lin, Z. X., Chen, X. Y., & Croteau, R. (2002). A cDNA clone for β-caryophyllene synthase from Artemisia annua. Phytochemistry, 61(5), 523-529. doi.org/10.1016/S0031-9422(02)00265-0.
[12] Carretero-Paulet, L., Cairó, A., Talavera, D., Saura, A., Imperial, S., Rodríguez-Concepción, M., ... & Boronat, A. (2013). Functional and evolutionary analysis of DXL1, a
non-essential gene encoding a 1-deoxy-D-xylulose 5-phosphate synthase like protein in Arabidopsis thaliana. Gene, 524(1), 40-53. doi.org/10.1016/j.gene.2012.10.071.
[13] Croteau, R., Felton, M., Karp, F., & Kjonaas, R. (1981). Relationship of camphor biosynthesis to leaf development in sage (Salvia officinalis). Plant Physiology, 67(4), 820-824. doi:10.1104/pp.67.4.820.
[14] Daghbouche, S., Ammar, I., Rekik, D.M., Djazouli, Z.E., Zebib, B. & Merah, O. (2020) Effect of phenological stages on essential oil composition of Cytisus triflorus L’Her. Journal of King Saud University-Science, 32(4), 2383-2387. doi.org/10.1016/j.jksus.2020.03.020.
[15] Demura, T., & Ye, Z. H. (2010). Regulation of plant biomass production. Current opinion in plant biology, 13(3), 298-303. doi.org/10.1016/j.pbi.2010.03.002.
[16] Dhifi, W., Litaiem, M., Jelali, N., Hamdi, N., & Mnif, W. (2011). Identification of a new chemotye of the plant Mentha aquatica grown in Tunisia: chemical composition, antioxidant and biological activities of its essential oil. Journal of Essential Oil Bearing Plants, 14(3), 320-328. doi:10.1080/0972060X.2011.10643941.
[17] Dudareva, N., Klempien, A., Muhlemann, J. K., & Kaplan, I. (2013). Biosynthesis, function and metabolic engineering of plant volatile organic compounds. New Phytologist, 198(1), 16-32. doi.org/10.1111/nph.12145.
[18] Farzadfar, S., Zarinkamar, F., Modarres-Sanavy, S. A. M., & Hojati, M. (2013). Exogenously applied calcium alleviates cadmium toxicity in Matricaria chamomilla L. plants. Environmental Science and Pollution Research, 20, 1413-1422. doi:10.1007/s11356-012-1181-9.
[19] Figueiredo, A. C., Barroso, J. G., Pedro, L. G., & Scheffer, J. J. (2008). Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour and Fragrance journal, 23(4), 213-226. doi.org/10.1002/ffj.1875.
[20] Harley, R. M. (2004). Labiatae. Flowering Plants Dicotyledons 167–275. doi.org/10.1007/978-3-642-18617-2.
[21] Hassanpouraghdam, M. B., Mohammadzadeh, A., Morshedloo, M. R., Asadi, M., Rasouli, F., Vojodi Mehrabani, L., & Najda, A. (2022). Mentha aquatica L. Populations from the Hyrcanian Hotspot: Volatile Oil Profiles and Morphological Diversity. Agronomy, 12(10), 2277. doi.org/10.3390/agronomy12102277.
[22] Jiang, S. Y., Jin, J., Sarojam, R., & Ramachandran, S. (2019). A comprehensive survey on the terpene synthase gene family provides new insight into its evolutionary patterns. Genome biology and evolution, 11(8), 2078-2098. doi:10.1093/gbe/evz142.
[23] Kahraman, A., Celep, F., & Dogan, M. (2010). Anatomy, trichome morphology and palynology of Salvia chrysophylla Stapf (Lamiaceae). South African Journal of Botany, 76(2), 187-195. doi.org/10.1016/j.sajb.2009.10.003.
[24] Lu, X., Zhang, L., Zhang, F., Jiang, W., Shen, Q., Zhang, L., ... & Tang, K. (2013). A a ORA, a trichome‐specific AP 2/ERF transcription factor of Artemisia annua, is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to Botrytis cinerea. New Phytologist, 198(4), 1191-1202. doi:10.1111/nph.12207.
[25] Mallavarapu, G. R., Kulkarni, R. N., Baskaran, K., Rao, L., & Ramesh, S. (1999). Influence of plant growth stage on the essential oil content and composition in Davana (Artemisia pallens Wall.). Journal of agricultural and food chemistry, 47(1), 254-258. doi:10.1021/jf980624c.
[26] McGarvey, D. J., & Croteau, R. (1995). Terpenoid metabolism. The plant cell, 7(7), 1015. doi:10.1105/tpc.7.7.1015.
[27] Nazari, M., Zarinkamar, F., & Soltani, B. M. (2017). Physiological, biochemical and molecular responses of Mentha aquatica L. to manganese. Plant Physiology and Biochemistry, 120, 202-212. doi.org/10.1016/j.plaphy.2017.08.003.
[28] [28] Nazari, M., Zarinkamar, F., Soltani, B. M., & Niknam, V. (2018). Manganese-induced changes in glandular trichomes density and essential oils production of Mentha aquatica L. at different growth stages. Journal of Trace Elements in Medicine and Biology, 50, 57-66. doi:10.1016/j.plaphy.2017.08.003.
[29] [29] Oliveira, M. J., Campos, I. F., Oliveira, C. B., Santos, M. R., Souza, P. S., Santos, S. C., ... & Ferri, P. H. (2005). Influence of growth phase on the essential oil composition of Hyptis suaveolens. Biochemical Systematics and Ecology, 33(3), 275-285.
[30] [30] Özyazici, G., & Kevseroğlu, K. (2019). Effects of ontogenetic variability on yield of some Labiatae family (Mentha spicata L., Origanum onites L., Melissa officinalis L., Lavandula angustifolia Mill.) plants. doi.org/10.19159/tutad.594468.
[31] [31] Picazo-Aragonés, J., Terrab, A., & Balao, F. (2020). Plant volatile organic compounds evolution: transcriptional regulation, epigenetics and polyploidy. International Journal of Molecular Sciences, 21(23), 8956. doi:10.3390/ijms21238956.
[32] [32] Querol, J., Grosdemange-Billiard, C., Rohmer, M., Boronat, A., & Imperial, S. (2002). Enzymatic synthesis of 1-deoxysugar-phosphates using E. coli 1-deoxy-d-xylulose 5-phosphate synthase. Tetrahedron letters, 43(46), 8265-8268. doi.org/10.1021/jo971933p.
[33] [33] Raja, R. R. (2012). Medicinally potential plants of Labiatae (Lamiaceae) family: an overview. Research journal of medicinal plant, 6(3), 203-213. doi:10.3923/rjmp.2012.203.213.
[34] [34] Sellami, I. H., Maamouri, E., Chahed, T., Wannes, W. A., Kchouk, M. E., & Marzouk, B. (2009). Effect of growth stage on the content and composition of the essential oil and phenolic fraction of sweet marjoram (Origanum majorana L.). Industrial Crops and Products, 30(3), 395-402. doi.org/10.1016/j.indcrop.2009.07.010.
[35] [35] Singh, N., Luthra, R., & Sangwan, R. S. (1989). Effect of leaf position and age on the essential oil quantity and quality in lemongrass (Cymbopogon flexuosus) 1. Planta medica, 55(03), 254-256. doi:10.1055/s-2006-961997.
[36] [36] Talebi, S. M., Mahdiyeh, M., Nohooji, M. G., & Akhani, M. (2018). Analysis of trichome morphology and density in Salvia nemorosa L.(Lamiaceae) of Iran. Botanica, 24(1), 49-58.
[37] [37] Turner, G. W., Gershenzon, J., & Croteau, R. B. (2000). Development of peltate glandular trichomes of peppermint. Plant physiology, 124(2), 665-680. doi.org/10.1104/pp.124.2.665.
[38] Ueoka, H., Sasaki, K., Miyawaki, T., Ichino, T., Tatsumi, K., Suzuki, S., ... & Yazaki, K. (2020). A cytosol-localized geranyl diphosphate synthase from Lithospermum erythrorhizon and its molecular evolution. Plant Physiology, 182(4), 1933-1945. doi.org/10.1104/pp.19.00999.
[39] Uritu, C. M., Mihai, C. T., Stanciu, G. D., Dodi, G., Alexa-Stratulat, T., Luca, A., ... & Tamba, B. I. (2018). Medicinal plants of the family Lamiaceae in pain therapy: A review. Pain Research and Management, 2018. doi.org/10.1155/2018/7801543.
[40] Uyanık, M., & Gürbüz, B. (2015). Effect of ontogenetic variability on essential oil content and its composition in lemon balm (Melissa officinalis L.). Tekirdağ Ziraat Fakültesi Dergisi, 12, 91-96.
[41] Verma, R. S., Padalia, R. C., Verma, S. K., Chauhan, A., & Darokar, M. P. (2014). The essential oil of'bhang'(Cannabis sativa L.) for non-narcotic applications. Current Science, 645-650. doi:10.18520/CS/V107/I4/645-650.
[42] Vuerich, M., Ferfuia, C., Zuliani, F., Piani, B., Sepulcri, A., & Baldini, M. (2019). Yield and quality of essential oils in hemp varieties in different environments. Agronomy, 9(7), 356. doi.org/10.3390/agronomy9070356.
[43] Wagner, G. J. (1991). Secreting glandular trichomes: more than just hairs. Plant physiology, 96(3), 675-679. doi:10.1104/pp.96.3.675.
[44] Werker, E. (1993). Function of essential oil‐secreting glandular hairs in aromatic plans of Lamiacea—a review. Flavour and fragrance journal, 8(5), 249-255. doi.org/10.1002/ffj.2730080503.
[45] Yadav, R. K., Sangwan, R. S., Sabir, F., Srivastava, A. K., & Sangwan, N. S. (2014). Effect of prolonged water stress on specialized secondary metabolites, peltate glandular trichomes, and pathway gene expression in Artemisia annua L. Plant physiology and biochemistry, 74, 70-83. doi:10.1016/j.plaphy.2013.10.023.
[46] Yang, L., Wen, K. S., Ruan, X., Zhao, Y. X., Wei, F., & Wang, Q. (2018). Response of plant secondary metabolites to environmental factors. Molecules, 23(4), 762. doi:10.3390/molecules23040762.
[47] Yeşil, M., & Özcan, M. M. (2021). Effects of harvest stage and diurnal variability on yield and essential oil content in Mentha× piperita L. Plant, Soil and Environment, 67(7), 417-423. do oi.org/10.17221/114/2021-PSE.
[48] Yousefzadeh, K., Houshmand, S., Shiran, B., Mousavi-Fard, S., Zeinali, H., Nikoloudakis, N., ... & Fanourakis, D. (2022). Joint effects of developmental stage and water deficit on essential oil traits (content, yield, composition) and elated gene expression: A case study in two Thymus species. Agronomy, 12(5), 1008. doi.org/10.3390/agronomy12051008.
[49] Zandalinas, S.I., Sales, C., Beltrán, J., Gómez-Cadenas, A. & Arbona, V. (2017) Activation of secondary metabolism in citrus plants is associated to sensitivity to combined drought and high temperatures. Frontiers in plant science, 7, 1954. doi.org/10.3389/fpls.2016.01954.
[50] Zarinkamar, F., Ghannadnia, M., & Haddad, R. (2012). Limonene synthase gene expression under different concentrations of manganese in Cuminum cyminum L. African Journal of Plant Science, 6(6), 203-212. doi:10.5897/JMPR11.195.
[51] Zhang, X., Guan, H., Dai, Z., Guo, J., Shen, Y., Cui, G., ... & Huang, L. (2015). Functional analysis of the isopentenyl diphosphate isomerase of Salvia miltiorrhiza via color complementation and RNA interference. Molecules, 20(11), 20206-20218. doi:10.3390/molecules201119689.
[52] Zhang, S., Ding, G., He, W., Liu, K., Luo, Y., Tang, J., & He, N. (2020). Functional characterization of the 1-deoxy-D-xylulose 5-phosphate synthase genes in Morus notabilis. Frontiers in Plant Science, 11, 1142. doi.org/10.3389/fpls.2020.01142.
[53] Zhao, Y., Chen, Y., Gao, M., Yin, H., Wu, L., & Wang, Y. (2020). Overexpression of geranyl diphosphate synthase small subunit 1 (LcGPPS. SSU1) enhances the monoterpene content and biomass. Industrial Crops and Products, 143, 1. doi.org/10.1016/j.indcrop.2019.111926.