[1] Amin, M., Zhang, X. Y., Xu, X. Y., & Qi, S. H. (2020). New citrinin derivatives from the deep-sea-derived fungus Cladosporium sp. SCSIO z015. Natural product research, 34(9), 1219–1226. https://doi.org/10.1080/14786419.2018.1556266
[2] Angon, P. B., Tahjib-Ul-Arif, M., Samin, S. I., Habiba, U., Hossain, M. A., & Brestic, M. (2022). How Do Plants Respond to Combined Drought and Salinity Stress? —A Systematic Review. Plants, 11(21), 2884.https://doi.org/10.3390/plants11212884
[3] Aremu, B. R., & Babalola, O. O. (2015). Construction of Specific Primers for Rapid Detection of South African Exportable Vegetable Macergens. International journal of environmental research and public health, 12(10), 12356–12370. https://doi.org/10.3390/ijerph121012356
[4] Aujla, I. S., & Paulitz, T. C. (2017). An improved method for establishing accurate water potential levels at different temperatures in growth media. Frontiers in microbiology, 8, 1497. https://doi.org/10.3389/fmicb.2017.01497
[5] Behling, R., Roessner, S., Foerster, S., Saemian, P., Tourian, M. J., Portele, T. C., & Lorenz, C. (2022). Interrelations of vegetation growth and water scarcity in Iran revealed by satellite time series. Scientific Reports, 12(1), 20784. https://doi.org/10.1038/s41598-022-24712-6
[6] Becchimanzi, A., Zimowska, B., & Nicoletti, R. (2021). Cryptic Diversity in Cladosporium cladosporioides Resulting from Sequence-Based Species Delimitation Analyses. Pathogens (Basel, Switzerland), 10(9), 1167. https://doi.org/10.3390/pathogens10091167
[7] Bensch, K., Groenewald, J. Z., Braun, U., Dijksterhuis, J., de Jesús Yáñez-Morales, M., & Crous, P. W. (2015). Common but different: The expanding realm of Cladosporium. Studies in Mycology, 82(1), 23-74. https://doi.org/10.1016/j.simyco.2015.10.001
[8] Bensch, K., Groenewald, J. Z., Meijer, M., Dijksterhuis, J., Jurjević, Ž., Andersen, B., Houbraken, J., Crous, P. W., & Samson, R. A. (2018). Cladosporium species in indoor environments. Studies in mycology, 89, 177–301. https://doi.org/10.1016/j.simyco.2018.03.002
[9] Byregowda, R., Prasad, S. R., Oelmüller, R., Nataraja, K. N., & Prasanna Kumar, M. K. (2022). Is Endophytic Colonization of Host Plants a Method of Alleviating Drought Stress? Conceptualizing the Hidden World of Endophytes. International Journal of Molecular Sciences, 23(16), 9194. https://doi.org/10.3390/ijms23169194.
[10] Caruso, D. J., Palombo, E. A., Moulton, S. E., & Zaferanloo, B. (2022). Exploring the promise of endophytic fungi: A Review of novel antimicrobial compounds. Microorganisms, 10(10), 1990. https://doi.org/10.3390/microorganisms10101990.
[11] Crous, P. W., Shivas, R. G., Quaedvlieg, W., van der Bank, M., Zhang, Y., Summerell, B. A., Guarro, J., Wingfield, M. J., Wood, A. R., Alfenas, A. C., Braun, U., Cano-Lira, J. F., García, D., Marin-Felix, Y., Alvarado, P., Andrade, J. P., Armengol, J., Assefa, A., den Breeÿen, A., Camele, I., Groenewald, J. Z. (2014). Fungal Planet description sheets: 214-280. Persoonia, 32, 184–306. https://doi.org/10.3767/003158514X682395
[12] Devkota, K. P., Devkota, M., Rezaei, M., & Oosterbaan, R. (2022). Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands. Agricultural Systems, 198, 103390. https://doi.org/198. 103390. 10.1016/j.agsy.2022.103390.
[13] El-Saadony, M. T., Saad, A. M., Soliman, S. M., Salem, H. M., Ahmed, A. I., Mahmood, M., El-Tahan, A. M., Ebrahim, A. A. M., Abd El-Mageed, T. A., Negm, S. H., Selim, S., Babalghith, A. O., Elrys, A. S., El-Tarabily, K. A., & AbuQamar, S. F. (2022). Plant growth-promoting microorganisms as biocontrol agents of plant diseases: Mechanisms, challenges and future perspectives. Frontiers in plant science, 13, 923880. https://doi.org/10.3389/fpls.2022.923880
[14] Flowers, T. J., Munns, R., & Colmer, T. D. (2015). Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Annals of botany, 115(3), 419-431. https://doi.org/10.1093/aob/mcu217.
[15] Glasel, J. A. (1995). Validity of nucleic acid purities monitored by 260nm/280nm absorbance ratios. Biotechniques, 18(1), 62-63.
[16] Gupta, S., Schillaci, M., Walker, R., Smith, P. M., Watt, M., & Roessner, U. (2021). Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: Current knowledge, perspectives and future directions. Plant and Soil, 461, 219-244. https://doi.org/10.1007/s11104-020-04618-w
[17] Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California agricultural experiment station, 347(2nd edit).
[18] Hosseyni Moghaddam, M. S., Safaie, N., Soltani, J., & Hagh-Doust, N. (2021). Desert-adapted fungal endophytes induce salinity and drought stress resistance in model crops. Plant physiology and biochemistry: PPB, 160, 225–238. https://doi.org/10.1016/j.plaphy.2021.01.022
[19] Iturrieta-González, I., García, D., & Gené, J. (2021). Novel species of Cladosporium from environmental sources in Spain. MycoKeys, 77, 1–25. https://doi.org/10.3897/mycokeys.77.60862
[20] Jalili, B., Bagheri, H., Azadi, S., & Soltani, J. (2020). Identification and salt tolerance evaluation of endophyte fungi isolate from halophyte plants. International journal of environmental science and technology, 17, 3459-3466. https://doi.org/10.1007/s13762-020-02626-y
[21] Kamran, M., Imran, Q. M., Ahmed, M. B., Falak, N., Khatoon, A., & Yun, B. W. (2022). Endophyte-Mediated Stress Tolerance in Plants: A Sustainable Strategy to Enhance Resilience and Assist Crop Improvement. Cells, 11(20), 3292. https://doi.org/10.3390/cells11203292
[22] Khan, Z., Rho, H., Firrincieli, A., Hung, S. H., Luna, V., Masciarelli, O., & Doty, S. L. (2016). Growth enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consortia. Current Plant Biology, 6, 38-47. https://doi.org/10.1016/j.cpb.2016.08.001
[23] Lahlali, R., Ezrari, S., Radouane, N., Kenfaoui, J., Esmaeel, Q., El Hamss, H., Belabess, Z., & Barka, E. A. (2022). Biological Control of Plant Pathogens: A Global Perspective. Microorganisms, 10(3), 596. https://doi.org/10.3390/microorganisms10030596
[24] Liu, Y., Kurtán, T., Yun Wang, C., Han Lin, W., Orfali, R., Müller, W. E., Daletos, G., & Proksch, P. (2016). Cladosporinone, a new viriditoxin derivative from the hypersaline lake derived fungus Cladosporium cladosporioides. The Journal of antibiotics, 69(9), 702–706. https://doi.org/10.1038/ja.2016.11
[25] Lu, Y.H.; Li, S.; Shao, M.W.; Xiao, X.H.; Kong, L.C.; Jiang, D.H.; Zhang, Y.L. Isolation, identification, derivatization and phytotoxic activity of secondary metabolites produced by Cladosporium oxysporum DH14, a locust-associated fungus. J. Integr. Agric. 2016, 15, 832–839. https://doi.org/10.3390/molecules26133959
[26] Murray, M. G., & Thompson, W. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic acids research, 8(19), 4321-4326. https://doi.org/10.1093/nar/8.19.4321
[27] Nicoletti, R., Beccaro, G. L., Sekara, A., Cirillo, C., & Di Vaio, C. (2021). Endophytic Fungi and Ecological Fitness of Chestnuts. Plants (Basel, Switzerland), 10(3), 542. https://doi.org/10.3390/plants10030542
[28] Papizadeh, M., Wijayawardene, N. N., Amoozegar, M. A., Saba, F., Fazeli, S. A. S., & Hyde, K. D. (2018). Neocamarosporium jorjanensis, N. persepolisi, and N. solicola spp. nov. (Neocamarosporiaceae, Pleosporales) isolated from saline lakes of Iran indicate the possible halotolerant nature for the genus. Mycological Progress, 17, 661-679. https://doi.org/10.1007/s11557-017-1341-x
[29] Salazar, J. M., Pomavilla, M., Pollard, A. T., Chica, E. J., & Peña, D. F. (2020). Endophytic fungi associated with roots of epiphytic orchids in two Andean forests in Southern Ecuador and their role in germination. Lankesteriana, 20(1), 37-47. https://dx.doi.org/10.15517/lank.v20i1.41157
[30] Salvatore, M. M., Andolfi, A., & Nicoletti, R. (2021). The Genus Cladosporium: A Rich Source of Diverse and Bioactive Natural Compounds. Molecules (Basel, Switzerland), 26(13), 3959. https://doi.org/10.3390/molecules26133959
[31] Sharma, H., Rai, A. K., Dahiya, D., Chettri, R., & Nigam, P. S. (2021). Exploring endophytes for in vitro synthesis of bioactive compounds similar to metabolites produced in vivo by host plants. AIMS microbiology, 7(2), 175. https://doi.org/10.3934/microbiol.2021012.
[32] Shirvani, A. Sh, Shabestani. S, A, A, Karuri. G, Imani. M, Matinizadeh. M, Khoshnavis. (Eds.). (2013). Yazd provice's long - lived trees: a reminder of past millennia. Tehran: Niyak. (in Persian).
[33] Shrivastava, N. M, Shubhangi. A, Varma. 2021. Symbiotic Soil Microorganisms Biology and Applications. Springer Nature Switzerland. https://doi.org/10.1007/978-3-030-51916-2
[34] Verma, S., Varma, A., Rexer, K. H., Hassel, A., Kost, G., Sarbhoy, A., ... & Franken, P. (1998). Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia, 90(5), 896-903. https://doi.org/10.2307/3761331
[35] Verma, A., Shameem, N., Jatav, H. S., Sathyanarayana, E., Parray, J. A., Poczai, P., & Sayyed, R. Z. (2022). Fungal endophytes to combat biotic and abiotic stresses for climate-smart and sustainable agriculture. Frontiers in plant science, 13. https://doi.org/10.3389/fpls.2022.953836
[36] Vierheilig, H., Coughlan, A. P., Wyss, U., & Piche, Y. (1998). Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Applied and environmental microbiology, 64(12), 5004–5007. https://doi.org/10.1128/AEM.64.12.5004-5007.1998
[37] White, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, 18(1), 315-322. http://dx.doi.org/10.1016/B978-0-12-372180-8.50042-1
[38] Xia, Y., Liu, J., Chen, C., Mo, X., Tan, Q., He, Y., ... & Zhou, G. (2022). The multifunctions and future prospects of endophytes and their metabolites in plant disease management. Microorganisms, 10(5), 1072. https://doi.org/10.3390/microorganisms10051072.
[39] Yasseen, B. T., & Al-Thani, R. F. (2022). Endophytes and halophytes to remediate industrial wastewater and saline soils: Perspectives from Qatar. Plants, 11(11), 1497. https://doi.org/10.3390/plants11111497
[40] Zhang, F. Z., Li, X. M., Li, X., Yang, S. Q., Meng, L. H., & Wang, B. G. (2019). Polyketides from the Mangrove-Derived Endophytic Fungus Cladosporium cladosporioides. Marine drugs, 17(5), 296. https://doi.org/10.3390/md17050296
[41] Zimowska, B., Becchimanzi, A., Krol, E. D., Furmanczyk, A., Bensch, K., & Nicoletti, R. (2021). New Cladosporium Species from Normal and Galled Flowers of Lamiaceae. Pathogens (Basel, Switzerland), 10(3), 369. https://doi.org/10.3390/pathogens10030369