Search for fungal endophytes resistant to salt in order to extend the cultivation of medicinal plants in saline areas

Document Type : Research Paper

Authors

1 Department of Horticultural Sciences, Gorgan University of Agricultural Sciences and Natural Resources

2 Plant Protection Research Department, Yazd Agricultural and Natural Resources Research and Education Center, AREEO, Yazd, Iran

Abstract

Endophytes, especially fungal types, are often useful for host plants and while improving the production of specific metabolites of the host plant, they protect them against stresses, especially salt and drought stress. It is assumed that the plants that adapted to harsh conditions and lived in these climatic conditions for many years, are necessarily equipped with evolved salinity-resistant endophytes. Therefore, their isolation and transfering to host plants will provide the possibility of cultivation of medicinal plant in saline soil and drough conditions. For this purpose, Yazd province was considered as a pilot. In this study, different parts (root, stem and branches) of 112 species including ancient trees and prennials were selected. plant samples were transferred to the laboratory and after sterilization, were cultured in PDA. Out of 32 studied plant species, more than 70 endophytes were purified and cloned. Then, the isolated fungi were cultured in media with different salinity levels of 1, 2, and 3 M of sodium chloride NaCl, respectively. The results showed that among the investigated fungi, around 50 strains grew up in the medium containing one sodium chloride salt in 1M. In the continuation of the screening process of the selected samples, 6 strains of the isolated fungal endophytes were able to grow in the medium containing NaCl in the concentration of 3 M. The possibility of hosting the basil plant (Ocimum basilicum) for three selected endophyte isolates showed that all of the isolates have the ability to penetrate and spread in basil roots without any pathogenic symptoms. Study of the ITS genomic regions of ribosomal DNA of selected endophytes showed that there is a high sexual and species diversity in the isolated endophytes. The high biodiversity and the possibility of establishing selected endophytes in the basil plant in the current research will promise good results in basil cultivation in saline conditions, which requires further investigation.

Keywords


 
[1] Amin, M., Zhang, X. Y., Xu, X. Y., & Qi, S. H. (2020). New citrinin derivatives from the deep-sea-derived fungus Cladosporium sp. SCSIO z015. Natural product research, 34(9), 1219–1226. https://doi.org/10.1080/14786419.2018.1556266
[2] Angon, P. B., Tahjib-Ul-Arif, M., Samin, S. I., Habiba, U., Hossain, M. A., & Brestic, M. (2022). How Do Plants Respond to Combined Drought and Salinity Stress? —A Systematic Review. Plants, 11(21), 2884.https://doi.org/10.3390/plants11212884
[3] Aremu, B. R., & Babalola, O. O. (2015). Construction of Specific Primers for Rapid Detection of South African Exportable Vegetable Macergens. International journal of environmental research and public health, 12(10), 12356–12370. https://doi.org/10.3390/ijerph121012356
[4] Aujla, I. S., & Paulitz, T. C. (2017). An improved method for establishing accurate water potential levels at different temperatures in growth media. Frontiers in microbiology, 8, 1497. https://doi.org/10.3389/fmicb.2017.01497
[5] Behling, R., Roessner, S., Foerster, S., Saemian, P., Tourian, M. J., Portele, T. C., & Lorenz, C. (2022). Interrelations of vegetation growth and water scarcity in Iran revealed by satellite time series. Scientific Reports, 12(1), 20784. https://doi.org/10.1038/s41598-022-24712-6
[6] Becchimanzi, A., Zimowska, B., & Nicoletti, R. (2021). Cryptic Diversity in Cladosporium cladosporioides Resulting from Sequence-Based Species Delimitation Analyses. Pathogens (Basel, Switzerland), 10(9), 1167. https://doi.org/10.3390/pathogens10091167
[7] Bensch, K., Groenewald, J. Z., Braun, U., Dijksterhuis, J., de Jesús Yáñez-Morales, M., & Crous, P. W. (2015). Common but different: The expanding realm of Cladosporium. Studies in Mycology, 82(1), 23-74. https://doi.org/10.1016/j.simyco.2015.10.001
[8] Bensch, K., Groenewald, J. Z., Meijer, M., Dijksterhuis, J., Jurjević, Ž., Andersen, B., Houbraken, J., Crous, P. W., & Samson, R. A. (2018). Cladosporium species in indoor environments. Studies in mycology, 89, 177–301. https://doi.org/10.1016/j.simyco.2018.03.002
[9] Byregowda, R., Prasad, S. R., Oelmüller, R., Nataraja, K. N., & Prasanna Kumar, M. K. (2022). Is Endophytic Colonization of Host Plants a Method of Alleviating Drought Stress? Conceptualizing the Hidden World of Endophytes. International Journal of Molecular Sciences, 23(16), 9194. https://doi.org/10.3390/ijms23169194.
[10] Caruso, D. J., Palombo, E. A., Moulton, S. E., & Zaferanloo, B. (2022). Exploring the promise of endophytic fungi: A Review of novel antimicrobial compounds. Microorganisms, 10(10), 1990. https://doi.org/10.3390/microorganisms10101990.
[11] Crous, P. W., Shivas, R. G., Quaedvlieg, W., van der Bank, M., Zhang, Y., Summerell, B. A., Guarro, J., Wingfield, M. J., Wood, A. R., Alfenas, A. C., Braun, U., Cano-Lira, J. F., García, D., Marin-Felix, Y., Alvarado, P., Andrade, J. P., Armengol, J., Assefa, A., den Breeÿen, A., Camele, I., Groenewald, J. Z. (2014). Fungal Planet description sheets: 214-280. Persoonia, 32, 184–306. https://doi.org/10.3767/003158514X682395
[12] Devkota, K. P., Devkota, M., Rezaei, M., & Oosterbaan, R. (2022). Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands. Agricultural Systems, 198, 103390. https://doi.org/198. 103390. 10.1016/j.agsy.2022.103390.
[13] El-Saadony, M. T., Saad, A. M., Soliman, S. M., Salem, H. M., Ahmed, A. I., Mahmood, M., El-Tahan, A. M., Ebrahim, A. A. M., Abd El-Mageed, T. A., Negm, S. H., Selim, S., Babalghith, A. O., Elrys, A. S., El-Tarabily, K. A., & AbuQamar, S. F. (2022). Plant growth-promoting microorganisms as biocontrol agents of plant diseases: Mechanisms, challenges and future perspectives. Frontiers in plant science, 13, 923880. https://doi.org/10.3389/fpls.2022.923880
[14] Flowers, T. J., Munns, R., & Colmer, T. D. (2015). Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Annals of botany, 115(3), 419-431. https://doi.org/10.1093/aob/mcu217.
[15] Glasel, J. A. (1995). Validity of nucleic acid purities monitored by 260nm/280nm absorbance ratios. Biotechniques, 18(1), 62-63.
[16] Gupta, S., Schillaci, M., Walker, R., Smith, P. M., Watt, M., & Roessner, U. (2021). Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: Current knowledge, perspectives and future directions. Plant and Soil, 461, 219-244. https://doi.org/10.1007/s11104-020-04618-w
[17] Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Circular. California agricultural experiment station, 347(2nd edit).
[18] Hosseyni Moghaddam, M. S., Safaie, N., Soltani, J., & Hagh-Doust, N. (2021). Desert-adapted fungal endophytes induce salinity and drought stress resistance in model crops. Plant physiology and biochemistry: PPB, 160, 225–238. https://doi.org/10.1016/j.plaphy.2021.01.022
[19] Iturrieta-González, I., García, D., & Gené, J. (2021). Novel species of Cladosporium from environmental sources in Spain. MycoKeys, 77, 1–25. https://doi.org/10.3897/mycokeys.77.60862
[20] Jalili, B., Bagheri, H., Azadi, S., & Soltani, J. (2020). Identification and salt tolerance evaluation of endophyte fungi isolate from halophyte plants. International journal of environmental science and technology, 17, 3459-3466. https://doi.org/10.1007/s13762-020-02626-y
[21] Kamran, M., Imran, Q. M., Ahmed, M. B., Falak, N., Khatoon, A., & Yun, B. W. (2022). Endophyte-Mediated Stress Tolerance in Plants: A Sustainable Strategy to Enhance Resilience and Assist Crop Improvement. Cells, 11(20), 3292. https://doi.org/10.3390/cells11203292
[22] Khan, Z., Rho, H., Firrincieli, A., Hung, S. H., Luna, V., Masciarelli, O., & Doty, S. L. (2016). Growth enhancement and drought tolerance of hybrid poplar upon inoculation with endophyte consortia. Current Plant Biology, 6, 38-47. https://doi.org/10.1016/j.cpb.2016.08.001
[23] Lahlali, R., Ezrari, S., Radouane, N., Kenfaoui, J., Esmaeel, Q., El Hamss, H., Belabess, Z., & Barka, E. A. (2022). Biological Control of Plant Pathogens: A Global Perspective. Microorganisms, 10(3), 596. https://doi.org/10.3390/microorganisms10030596
[24] Liu, Y., Kurtán, T., Yun Wang, C., Han Lin, W., Orfali, R., Müller, W. E., Daletos, G., & Proksch, P. (2016). Cladosporinone, a new viriditoxin derivative from the hypersaline lake derived fungus Cladosporium cladosporioides. The Journal of antibiotics, 69(9), 702–706. https://doi.org/10.1038/ja.2016.11
[25] Lu, Y.H.; Li, S.; Shao, M.W.; Xiao, X.H.; Kong, L.C.; Jiang, D.H.; Zhang, Y.L. Isolation, identification, derivatization and phytotoxic activity of secondary metabolites produced by Cladosporium oxysporum DH14, a locust-associated fungus. J. Integr. Agric. 2016, 15, 832–839. https://doi.org/10.3390/molecules26133959
[26] Murray, M. G., & Thompson, W. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic acids research, 8(19), 4321-4326. https://doi.org/10.1093/nar/8.19.4321
[27] Nicoletti, R., Beccaro, G. L., Sekara, A., Cirillo, C., & Di Vaio, C. (2021). Endophytic Fungi and Ecological Fitness of Chestnuts. Plants (Basel, Switzerland), 10(3), 542. https://doi.org/10.3390/plants10030542
[28] Papizadeh, M., Wijayawardene, N. N., Amoozegar, M. A., Saba, F., Fazeli, S. A. S., & Hyde, K. D. (2018). Neocamarosporium jorjanensis, N. persepolisi, and N. solicola spp. nov. (Neocamarosporiaceae, Pleosporales) isolated from saline lakes of Iran indicate the possible halotolerant nature for the genus. Mycological Progress, 17, 661-679. https://doi.org/10.1007/s11557-017-1341-x
[29] Salazar, J. M., Pomavilla, M., Pollard, A. T., Chica, E. J., & Peña, D. F. (2020). Endophytic fungi associated with roots of epiphytic orchids in two Andean forests in Southern Ecuador and their role in germination. Lankesteriana, 20(1), 37-47. https://dx.doi.org/10.15517/lank.v20i1.41157
[30] Salvatore, M. M., Andolfi, A., & Nicoletti, R. (2021). The Genus Cladosporium: A Rich Source of Diverse and Bioactive Natural Compounds. Molecules (Basel, Switzerland), 26(13), 3959. https://doi.org/10.3390/molecules26133959
[31] Sharma, H., Rai, A. K., Dahiya, D., Chettri, R., & Nigam, P. S. (2021). Exploring endophytes for in vitro synthesis of bioactive compounds similar to metabolites produced in vivo by host plants. AIMS microbiology, 7(2), 175. https://doi.org/10.3934/microbiol.2021012.
[32] Shirvani, A. Sh, Shabestani. S, A, A, Karuri. G, Imani. M, Matinizadeh. M, Khoshnavis. (Eds.). (2013). Yazd provice's long - lived trees: a reminder of past millennia. Tehran: Niyak. (in Persian).
[33] Shrivastava, N. M, Shubhangi. A, Varma. 2021. Symbiotic Soil Microorganisms Biology and Applications. Springer Nature Switzerland. https://doi.org/10.1007/978-3-030-51916-2
[34] Verma, S., Varma, A., Rexer, K. H., Hassel, A., Kost, G., Sarbhoy, A., ... & Franken, P. (1998). Piriformospora indica, gen. et sp. nov., a new root-colonizing fungus. Mycologia, 90(5), 896-903. https://doi.org/10.2307/3761331
[35] Verma, A., Shameem, N., Jatav, H. S., Sathyanarayana, E., Parray, J. A., Poczai, P., & Sayyed, R. Z. (2022). Fungal endophytes to combat biotic and abiotic stresses for climate-smart and sustainable agriculture. Frontiers in plant science, 13. https://doi.org/10.3389/fpls.2022.953836
[36] Vierheilig, H., Coughlan, A. P., Wyss, U., & Piche, Y. (1998). Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Applied and environmental microbiology, 64(12), 5004–5007. https://doi.org/10.1128/AEM.64.12.5004-5007.1998
[37] White, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, 18(1), 315-322. http://dx.doi.org/10.1016/B978-0-12-372180-8.50042-1
[38] Xia, Y., Liu, J., Chen, C., Mo, X., Tan, Q., He, Y., ... & Zhou, G. (2022). The multifunctions and future prospects of endophytes and their metabolites in plant disease management. Microorganisms, 10(5), 1072. https://doi.org/10.3390/microorganisms10051072.
[39] Yasseen, B. T., & Al-Thani, R. F. (2022). Endophytes and halophytes to remediate industrial wastewater and saline soils: Perspectives from Qatar. Plants, 11(11), 1497. https://doi.org/10.3390/plants11111497
[40] Zhang, F. Z., Li, X. M., Li, X., Yang, S. Q., Meng, L. H., & Wang, B. G. (2019). Polyketides from the Mangrove-Derived Endophytic Fungus Cladosporium cladosporioides. Marine drugs, 17(5), 296. https://doi.org/10.3390/md17050296
[41] Zimowska, B., Becchimanzi, A., Krol, E. D., Furmanczyk, A., Bensch, K., & Nicoletti, R. (2021). New Cladosporium Species from Normal and Galled Flowers of Lamiaceae. Pathogens (Basel, Switzerland), 10(3), 369. https://doi.org/10.3390/pathogens10030369