Adar, O., Kaplan-Levy, R. N., & Banet, G. (2016). High temperature Chlorellaceae (Chlorophyta) strains from the Syrian-African Rift Valley: the effect of salinity and temperature on growth, morphology and sporulation mode.
European Journal of Phycology,
51(4), 387–400.
https://doi.org/10.1080/09670262.2016.1193772
Ajala, S. O., & Alexander, M. L. (2020). Assessment of Chlorella vulgaris, Scenedesmus obliquus, and Oocystis minuta for Removal of Sulfate, Nitrate, and Phosphate in Wastewater.
International Journal of Energy and Environmental Engineering, 311–326.
https://doi.org/10.1007/s40095-019-00333-0
Ale, M. T., & Meyer, A. S. (2013). Fucoidans from brown seaweeds: An update on structures, extraction techniques and use of enzymes as tools for structural elucidation.
RSC Advances,
3(22), 8131–8141.
https://doi.org/10.1039/c3ra23373a
Ambriz-Pérez, D. L., Orozco-Guillen, E. E., Galán- Hernández, N. D., Luna-Avelar, K. D., Valdez-Ortiz, A., & Santos-Ballardo, D. U. (2021). Accurate method for rapid biomass quantification based on specific absorbance of microalgae species with biofuel importance.
Letters in Applied Microbiology,
73(3), 343–351.
https://doi.org/10.1111/lam.13519
Asadi, P., Rad, H. A., & Qaderi, F. (2019). Comparison of Chlorella vulgaris and Chlorella sorokiniana pa.91 in Post Treatment of Dairy Wastewater Treatment Plant Effluents.
Environmental Science and Pollution Research.
https://doi.org/10.1007/s11356-019-06051-8
Badar, S. N., Yaakob, Z., & Timmiati, S. N. (2017). Growth Evaluation of Microalgae Isolated from Palm Oil Mill Effluent in Synthetic Media.
Malaysian Journal of Analytical Science,
21(1), 82–94.
https://doi.org/10.17576/mjas-2017-2101-10
Baldisserotto, C., Sabia, A., Giovanardi, M., Ferroni, L., Maglie, M., & Pancaldi, S. (2022). Chlorophyta microalgae as dietary protein supplement: a comparative analysis of productivity related to photosynthesis.
Journal of Applied Phycology,
34(3), 1323–1340.
https://doi.org/10.1007/s10811-022-02724-z
Basak, R., Wahid, K. A., & Dinh, A. (2021). Estimation of the Chlorophyll-a Concentration of Algae Species Using Electrical Impedance Spectroscopy.
Water,
13(1223), 1–18.
https://doi.org/10.3390/w13091223
Bricaud, A., Morel, A., Babin, M., Allali, K., & Claustre, H. (1998). Variations of Light Absorption by Suspended Particles with Chlorophyll a Concentration in Oceanic (case 1) Waters: Analysis and Implications for Bio-Optical Models.
Journal of Geophysical Research: Oceans,
103(C13), 31033–31044.
https://doi.org/10.1029/98jc02712
Chioccioli, M., Hankamer, B., & Ross, I. L. (2014). Flow cytometry pulse width data enables rapid and sensitive estimation of biomass dry weight in the microalgae Chlamydomonas reinhardtii and Chlorella vulgaris.
PLoS ONE,
9(5), 1–12.
https://doi.org/10.1371/journal.pone.0097269
Chirivella-Martorell, J., Briz-Redón, Á., & Serrano- Aroca, Á. (2018). Modelling of biomass concentration, multi-wavelength absorption and discrimination method for seven important marine microalgae species.
Energies,
11(5).
https://doi.org/10.3390/en11051089
Cunha, L., & Grenha, A. (2016). Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. In
Marine Drugs (Vol. 14, Issue 42). MDPI AG.
https://doi.org/10.3390/md14030042
Godoy-Hernández, G., & Vázquez-Flota, F. A. (2006). Growth Measurements Estimation of Cell Division and Cell Expansion Gregorio. In
Plant Cell Culture Protocols-Methods in Molecular Biology (Vol. 318, pp. 51– 58). Gómez, M. P., Romeral, J. G., Martorell, J. C., & Aroca, Á. S. (2015). Direct spectrophotometric method to determine cell density of Isochrysis galbana in serial batch cultures from a larger scale fed-batch culture in exponential phase.
NEREIS,
8, 35–43.
https://doi.org/10.3390/mol2net-03-04632
Griffiths, M. J., Garcin, C., van Hille, R. P., & Harrison, S. T. L. (2011). Interference by Pigment in the Estimation of Microalgal Biomass Concentration by Optical Density.
Journal of Microbiological Methods,
85, 119–123.
https://doi.org/10.1016/j.mimet.2011.02.005
Guedes, C., & Malcata, X. F. (2012). Nutritional Value and Uses of Microalgae in Aquaculture. In
Aquaculture (pp. 59–78).
https://doi.org/10.5772/30576
Hanief, S., Prasakti, L., Pradana, Y. S., Cahyono, R. B., & Budiman, A. (2020). Growth Kinetic of Botryococcus braunii Microalgae Using Logistic and Gompertz Models.
AIP Conference Proceedings,
2296(November).
https://doi.org/10.1063/5.0030459
He, L., Chen, Y., Wu, X., Chen, S., Liu, J., & Li, Q. (2020). Effect of Physical Factors on the Growth of Chlorella vulgaris on Enriched Media Using the Methods of Orthogonal Analysis and Response Surface Methodology.
Water,
12(34).
https://doi.org/10.3390/w12010034
Hotos, G. N., Avramidou, D., & Bekiari, V. (2020). Calibration Curves of Culture Density Assessed by Spectrophotometer for Three Microalgae (Nephroselmis sp., Amphidinium carterae and Phormidium sp.).
European Journal of Biology and Biotechnology,
1(6), 1–7.
https://doi.org/10.24018/ejbio.2020.1.6.132
Islam, M. S., Senaha, I., Matiar Rahman, M., Yoda, Y., & Saha, B. B. (2022). Mathematical modelling and statistical optimization of fast cultivation of Agardhiella subulata: Response surface methodology.
Energy Nexus,
7.
https://doi.org/10.1016/j.nexus.2022.100115
Jia, F., Kacira, M., & Ogden, K. L. (2015). Multi- Wavelength Based Optical Density Sensor for Autonomous Monitoring of Microalgae.
Sensors,
15, 22234–22248.
https://doi.org/10.3390/s150922234
Lacerda, L. M. C. F., Queiroz, M. I., Furlan, L. T., Lauro, M. J., Modenesi, K., Jacob-Lopes, E., & Franco, T. T. (2011). Improving Refinery Wastewater for Microalgal Biomass Production and CO2 Biofixation: Predictive Modeling and Simulation.
Journal of Petroleum Science and Engineering,
78, 679–686.
https://doi.org/10.1016/j.petrol.2011.07.003
Mahlmann, D. M., Jahnke, J., & Loosen, P. (2008). Rapid Determination of The Dry Weight of Single, Living Cyanobacterial Cells Using the Mach-Zehnder Double- Beam Interference Microscope.
European Journal of Phycology,
43(4), 355–364.
https://doi.org/10.1080/09670260802168625
Mansouri, M. (2017). Predictive modeling of biomass production by Chlorella vulgaris in a draft-tube airlift photobioreactor.
Advances in Environmental Technology,
2(3), 119-126.
doi: 10.22104/aet.2017.433
Pruitt, K. M., & Kamau, D. N. (1993). Mathematical Models of Bacterial Growth, Inhibition and Death Under Combined Stress Conditions.
Journal of Industrial Microbiology,
12, 221–231.
https://doi.org/10.1007/BF01584194
Rodrigues, L. H. R., Arenzon, A., Raya-Rodriguez, M. T., & Ferreira Fontoura, N. (2011). Algal Density Assessed by Spectrophotometry: A Calibration Curve for The Unicellular Algae Pseudokirchneriella subcapitata.
Journal of Environmental Chemistry and Ecotoxicology,
3(8), 225–228.
https://doi.org/10.5897/jece2011.025
Rosenberg, J. N., Kobayashi, N., Barnes, A., Noel, E. A., Betenbaugh, M. J., & Oyler, G. A. (2014). Comparative Analyses of Three Chlorella species in Response to Light and Sugar Reveal Distinctive Lipid Accumulation Patterns in the Microalga C. sorokiniana.
PLoS ONE,
9(4).
https://doi.org/10.1371/journal.pone.0092460
Santos-Ballardo, D. U., Rossi, S., Hernández, V., Gómez, R. V., del Carmen Rendón-Unceta, M., Caro- Corrales, J., & Valdez-Ortiz, A. (2015). A simple Spectrophotometric Method for Biomass Measurement of Important Microalgae Species in Aquaculture.
Aquaculture,
448, 87–92.
https://doi.org/10.1016/j.aquaculture.2015.05.044
Schagerl, M., Siedler, R., Konopáčová, E., & Ali, S.S. (2022). Estimating Biomass and Vitality of Microalgae for Monitoring Cultures: A Roadmap for Reliable Measurements.
Cells,
11(15).
https://doi.org/10.3390/cells11152455
Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae.
Journal of Bioscience and Bioengineering,
101(2), 87–96.
https://doi.org/10.1263/jbb.101.87
Su, Y., Mennerich, A., & Urban, B. (2016). A Comparison of Feasible Methods for Microalgal Biomass Determinations During Tertiary Wastewater Treatment.
Ecological Engineering,
94, 532–536.
https://doi.org/10.1016/j.ecoleng.2016.06.023
Thatipamala, R., & Hill, G. A. (1991). Spectrophotometric method for high biomass concentration measurements.
Biotechnology and Bioengineering,
38(9), 1007–1011.
https://doi.org/10.1002/bit.260380908