Biological detoxification of mycotoxins by binding them with certain microorganisms: A review

Document Type : Review Paper

Authors

1 Research Department of Food Technology and Agricultural Products, Standard Research Institute, P.O. Box 31585-163, Karaj, Iran

2 Department of Food Science, Engineering and Technology, University of Tehran, P.O. Box 31587-77871, Karaj, Iran

Abstract

Mycotoxins are harmful toxic metabolites of fungi that are present as contaminants in many foods, dairy, and agricultural products and constitute a potential health hazard. Therefore, novel decontamination approaches for decreasing its bioavailability are of huge interest to improve human safety. In recent years, biological methods have been developed to control mycotoxin contamination. The degradation of mycotoxins (especially aflatoxins (AFs), which are created by the genus Aspergilla species, mainly A. parasiticus, A. flavus, and A. nomius) using microorganisms is an important bio-based method to reduce mycotoxin levels in foodstuffs without the production of harmful intermediates and by-products. Many studies have reported that detoxification occurs by binding the mycotoxin to the cell wall structure of microorganisms. Several factors, including the microorganism strain, the type of toxin, microorganism concentration, the viability of the microorganism, and the contact period, are involved in the detoxification processes. This review discusses the available literature on the biological decontamination of mycotoxins by probiotic microorganisms (mainly), describes the detoxification mechanisms involved in such processes, and the factors influencing the stability of interactions. Future perspectives on this area are also reported. Based on the current data, one should be able to select the most efficient microorganisms to degrade mycotoxins over a wide range of concentrations.

Keywords

Main Subjects


Afsah-Hejri, L. (2013). Saprophytic yeasts: effective biocontrol agents against Aspergillus flavus. International Food Research Journal. 20(6), 3403-3409.
Alassane-Kpembi, I., Schatzmayr, G., Taranu, I., Marin, D., Puel, O., & Oswald, I. P. (2017). Mycotoxins co-contamination: Methodological aspects and biological relevance of combined toxicity studies. Critical Reviews in Food  Science  and  Nutrition,  57,  3489-3507.Doi:1080/10408398.2016.1140632
Al-Nussairawi, M., Risa, A., Garai, E., Varga, E., Szabó, I., Csenki-Bakos, Z., Kriszt, B., & Cserháti, M. (2020). Mycotoxin biodegradation ability of the Cupriavidus genus. Current Microbiology, 77, 2430-2440. Doi:  10.1007/s00284-020-02063-7
Ansari, F., Khodaiyan, F., Rezaei, K., & Rahmani, A. (2015a). Modelling of aflatoxin G1 reduction by kefir grain using response surface methodology. Journal of Environmental Health Science & Engineering, 13(40), 1-7, Doi: 10.1186/s40201-015-0190-2
Ansari, F., Khodaiyan, F., Rezaei, K., & Rahmani, A. (2015b). Optimization of Aflatoxin B1 reduction in pistachio nuts by kefir grain using statistical experimental methods. Quality Assurance and Safety of Crops & Foods, 8(4), 509-518. Doi: 10.3920/QAS2015.0619
Baptista, A. S., Horii, J., Calori-Domingues, M. A., da Gloria, E. M., Salgado, J. M., & Vizioli, M. R. (2004). The capacity of mannooligosaccharides thermolysed yeast and active yeast to attenuate aflatoxicosis. World Journal of Microbiology and Biotechnology, 20, 475-481. Doi: 10.1023/B: WIBI.0000040397.48873.3b
Bejaouii, H., Mathieu, F., Taillandier, P., & Lebrihi, A. (2004). Ochratoxin A removal in synthetic and natural grape juices by selected oenological Saccharomyces strains. Journal of Applied Microbiology, 97, 1038-1044. Doi: 10.1111/j.1365-2672.2004. 02385.x
Taheur, F. B., Fedhila, K., Chaieb, K., Kouidhi, B., Bakhrouf, A., & Abrunhosa, L. (2017). Adsorption of aflatoxin B1, zearalenone and ochratoxin A by microorganisms isolated from Kefir grains. International Journal of Food Microbiology, 251, 1-7. Doi: 10.1016/j.ijfoodmicro.2017.03.021
Taheur, F. B., Mansour, C., Ben Jeddou, K., Machreki, Y., Kouidhi, B., Abdulhakim, J.A., & Chaieb, K. (2020). Aflatoxin B1 degradation by microorganisms isolated from Kombuchaculture. Toxicon, 179, 76-83. Doi: 10.1016/j.toxicon.2020.03.004
Bueno, D. J., Casale, C. H., Pizzolitto, R. P., Salano, M. A., & Olivier, G. (2007). Physical adsorption of aflatoxin B1 by lactic acid bacteria and Saccharomyces cerevisiae: A theoretical model. Journal of Food Protection, 70(9), 2148-2154. Doi: 10.4315/0362-028X-70.9.2148
Bzducha-Wróbel, A., Bryła, M., Gientka, I., Błażejak, S., & Janowicz, M. (2019). Candida utilis ATCC 9950 cell walls and β(1,3)/(1,6)-glucan preparations produced using agro-waste as a mycotoxins Trap. Toxins, 11, 192.Doi: 10.3390/toxins11040192
Campagnollo, F. B., Franco, L. T., Rottinghaus, G. E., Kobashigawa, E., Ledoux, D. R., Daković, A., & Oliveira, C. A. F. (2015). In vitro evaluation of the ability of beer fermentation residue containing Saccharomyces cerevisiae to bind mycotoxins. Food Research International, 77, 643- 648. Doi: 10.1016/j.foodres.2015.08.032
Campos-Avelar, I., de la Noue, A.C., Durand, N., Cazals, G., Martinez, V., Strub, C., Fontana, A., & Schorr- Galindo, S. (2021). Aspergillus flavus growth inhibition and aflatoxin B1 decontamination by Streptomyces isolates and their metabolites. Toxins, 13, 340. Doi: 10.3390/toxins13050340
Chen, S. W., Hsu, J. T., Chou, Y. A., & Wang, H. T.(2018). The application of digestive tract lactic acid bacteria with high esterase activity for zearalenone detoxification. Journal of the Science of Food and Agriculture, 98, 3870-3879. Doi: 10.1002/jsfa.8904
Corassin, C. H., Bovo, F., Rosim, R. E., & Oliveira, C. A. F. (2013). Efficiency of Saccharomyces cerevisiae and lactic acid bacteria strains to bind aflatoxin M1 in UHT skim milk. Food Control, 31, 80-83. Doi: 10.1016/j.foodcont.2012.09.033
Devegowda, G., Arvind, B. I. R., & Morton, M. G. (1996).        Saccharomyces cerevisiae            and mannanoligosaccharides to counteract aflatoxicosis in broilers. Proceedings of Australian Poultry Science Symposium, The University of Sydney, 8, 103-106.
Ejiofor, T., Mgbeahuruike, A.C., Ojiako, C., Ushie, A.M., Nwoko, E.I., Onoja, I.R., Dada, T., Mwanza, M., & Karlsson, M. (2021). Saccharomyces cerevisiae, bentonite, and kaolin as adsorbents for reducing the adverse impacts of mycotoxin contaminated feed on broiler histopathology and hemato-biochemical changes. Veterinary World, 14, 23-32. Doi: 10.14202/vetworld.2021.23-32
El- Khoury, A., Atoui, A., & Yaghi, J. (2011). Analysis of aflatoxin M1 in milk and yogurt and AFM1 reduction by lactic acid bacteria used in Lebanese industry. Food Control, 22(10), 1695-1699. Doi: 10.1016/j.foodcont.2011.04.001
El-Nezami, H., Kankaanpaa, P., Salminen, S., & Ahokas, J. (1998). Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food and Chemical Toxicology, 36(4), 321-326. Doi: 10.1016/S0278-6915(97)00160-9
Elsanhoty, R. M., Salam, S. A., Ramadan, M. F., & Badr, F. H. (2014). Detoxification of aflatoxin M1 in yoghurt using probiotics and lactic acid bacteria. Food Control, 43, 129-134. Doi: 10.1016/j.foodcont.2014.03.002 [21]. Ernuo, T., Xin, D., Wenhao, C., Changgao, W., Jianguo, L., & Cai, J. (2020). Structure and toxicity analysis of aflatoxin B1 biodegraded products by culture supernatant of Cladosporium   uredinicola. ScienceAsia,              46,          308.Doi: 10.2306/scienceasia1513-1874.2020.038
Fazeli, M. R., Hajimohammadali, M., Moshkani, A., Samadi, N., Jamalifar, H., Khoshayand, M. R., Vaghari, E., & Pouragahi, S. (2009). Aflatoxin B1 binding capacity of autochthonous strains of lactic acid bacteria. Journal of Food Protection, 72(1), 189-192. Doi: 10.4315/0362-028X-72.1.189
Freimund, S., Sauter, M., & Rys, P. (2003). Efficient adsorption of mycotoxins zearalenone and T-2 toxin on a modified yeast glucan. Journal of Environmental Science and Health, Part. B, 38(3), 243-255. Doi: 10.1081/PFC- 120019892
Fuchs, S., Sontag, G., Stidl, R., Ehrlich, V., Kundi, M., & Knasmüller, S. (2008). Detoxification of patulin and ochratoxin A, two abundant mycotoxins, by lactic acid bacteria. Food and Chemical Toxicology, 46(4), 1398- 1407. Doi: 10.1016/j.fct.2007.10.008.
Gourama, H., & Bullerman, L. B. (1995). Inhibition of growth and aflatoxin production of Aspergillus flavus by Lactobacillus species. Journal of Food Protection, 58, 1249- 1256. Doi: 10.4315/0362-028X-58.11.1249
Gratz, S., Mykkänen, H., Ouwehand, A. C., Juvonen, R., Salminen, S., & El-Nezami, H. (2004). Intestinal mucus alters the ability of probiotic bacteria to bind aflatoxin B1 in vitro. Applied and Environmental Microbiology, 70, 6306-6308. Doi: 10.1128/AEM.70.10.6306-6308.2004
Gratz, S., Mykkänen, H., & El-Nezami, H. (2005). Aflatoxin B1 binding by a mixture of Lactobacillus and Propionibacterium: in vitro versus ex vivo. Journal of Food Protection, 68, 2470-2474. Doi: 10.4315/0362-028X-68.11.2470
Gratz, S., Täubel, M., Juvonen, R. O., Viluksela, M., Turner, P. C., Mykkänen, H., & El-Nezami, H. (2006). Lactobacillus rhamnosus strain GG modulates intestinal absorption, fecal excretion, and toxicity of AFB1 in rats. Applied and Environmental Microbiology, 72(11), 7398-7400. Doi: 10.1128/aem.01348-06
Gratz, S., Wu, Q. K., El-Nezami, H., Juvonen, R. O., Mykkänen, H., & Turner, P. C. (2007). Lactobacillus rhamnosus strains GG reduces aflatoxin B1 transport, metabolism and toxicity in Caco-2 cells. Applied and Environmental Microbiology, 73(12), 3958-3964. Doi: 10.1128/AEM.02944-06
Grunkemeier, A. (1990). Untersuchungen zur beeinflussung der rückstandsbildung von ochratoxin A beim schwein durch den diätetischen einsatz von adsorbentien. Ph.D. dissertation, University of Munich, Germany.
Guan, Y., Chen, J., Nepovimova, E., Long, M., Wu, & Kuca, K. (2021). Aflatoxin detoxification using microorganisms and enzymes, Toxins, 13(1), 46. Doi: 10.3390/toxins 13010046
Haskard, C., Binnion, C., & Ahokas, J. (2000). Factors affecting the sequestration of aflatoxin by Lactobacillus rhamnosus strain GG. Chemico-Biological Interactions, 128, 39-49. Doi: 10.1016/S0009-2797(00)00186-1
Haskard, C. A., El-Nezami, H. S., Kankaanpää, P. E., Salminen, S., & Ahokas, J. T. (2001). Surface binding of afatoxin B1 by lactic acid bacteria. Applied and Environmental Microbiology, 67, 3086-3091. Doi: 10.1128/AEM.67.7.3086-3091.2001
Hernandez-Mendoza, A., Garcia, H. S., & Steele, J. L. (2009). Screening of Lactobacillus casei strains for their ability to bind aflatoxin B1. Food and Chemical Toxicology,        47(6): 1064-1068. Doi: 10.1016/j.fct.2009.01.042
Huang, L., Duan, C., Zhao, Y., Gao, L., Niu, C., Xu1, J., & Li, S. (2017). Reduction of aflatoxin B1 toxicity by Lactobacillus plantarum C88: A potental probiotic strain isolated from Chinese traditional fermented food "Tofu".PLOS ONE (Public Library of Science), 12(1), 1-16. Doi: 10.1371/journal.pone.0170109
Huwig, A., Freimund, S., Kappeli, O., & Dutler, H. (2001). Mycotoxin detoxication of animal feed by different adsorbents. Toxicology Letters, 122, 179-188. Doi:10.1016/S0378-4274(01)00360-5
IARC, International Agency for Research on Cancer, (1993). IARC monographs on the evaluation of carcinogenic risks to humans, vol. 59, some naturally occurring substances: food items and constituents, heterocyclic aromatic amines, and mycotoxins IARC. Press., Lyon, pp. 245-395.
Ismaiel, A. A., Ghaly, M. F., & El-Naggar, A. K. (2011). Milk kefir: Ultrastructure, antimicrobial activity and efficacy on aflatoxin B1 production by Aspergillus flavus. Current Microbiology, 62, 1602-1609. Doi: 10.1007/s00284-011-9901-9
Khanafari, A., Soudi, H., Miraboulfathi, M., & Karamei Osboo, R. (2007). An in vitro investigation of aflatoxin B1 biological control by Lactobacillus plantarum. Pakistan Journal of Biological Sciences, 4(3), 163-168. Doi: 10.3923/pjbs.2007.2553.2556
Lahtinen, S. J., Haskard, C. A., Ouwehandz, A. C., Salminenz, S. J., & Ahokasy, J. T. (2004). Binding of aflatoxin B1 to cell wall components of Lactobacillus rhamnosus strain GG. Food Additives and Contaminants, 21, 158-164. Doi: 10.1080/02652030310001639521
Lee, Y. K., El-Nezami, H., Haskard, C. A., Gratz, S., Puong, K. Y., Salminen, S., & Mykkänen, H. (2003). Kinetics of adsorption and desorption of aflatoxin B1 by viable and nonviable bacteria. Journal of Food Protection, 66(3), 426-430. Doi: 10.4315/0362-028X-66.3.426
Liu, L., Xie, M., & Wei, D. (2022). Biological detoxification of mycotoxins: current status and future advances. International Journal of Molecular Sciences, 23(3), 1064. Doi.org/10.3390/ijms23031064
Madrigal-Santillán, E., Madrigal-Bujaidar, E., Márquez-Márquez, R., & Reyes, A. (2006). Antigenotoxic effect of Saccharomyces cerevisiae on the damage produced in mice fed with aflatoxin B1 contaminated corn. Food and Chemical  Toxicology,  44(12), 2058-2063. Doi: 10.1016/j.fct.2006.07.006
Mann, R. (1977). Degradation of aflatoxin B1 by yeasts, molds and bacteria. Zeitschrift für Lebensmittel Forschung, 163(1), 39-43. Doi: 10.1007/bf01123555
Markov, K., Frece, J., Pleadin, J., Bevardi, M., Barišić, L., Kljusurić, J.G., Vulić, A., Jakopović, Ž., & Mrvčić, J. (2019). Gluconobacter oxydans—potential biological agent for binding or biotransformation of mycotoxins. World Mycotoxin Journal, 12, 153-161. Doi: 10.3920/WMJ2018.2324
Markowiak, P., Śliżewska, K., Nowak, A., Chlebicz, A., Żbikowski, A., Pawłowski, K., & Szeleszczuk, P. (2019). Probiotic microorganisms detoxify ochratoxin A in both a chicken liver cell line and chickens. Journal of the Science of Food and Agriculture, 99(9), 4309-4318. Doi: 10.1002/jsfa.9664
Marshall, H., Meneely, J.P., Quinn, B., Zhao, Y., Bourke, P., Gilmore, B.F., Zhang, G., & Elliott, C.T. (2020). Novel decontamination approaches and their potential application for post-harvest aflatoxin control. Trends in Food Science & Technology, 106, 489- 496. Doi: 10.1016/j.tifs.2020.11.001
Nahle, S., El Khoury, A., Savvaidis, I., Chokr, A., Louka, N., & Atoui, A. (2022). Detoxification approaches of mycotoxins: by microorganisms, biofilms and enzymes. International Journal of Food Contamination, 9(1), 1-4. Doi 10.1186/s40550-022-00089-2
Nakazato, M., Morozumi, S., Saito, K., Fujinuma, K., Nishima, T., & Kasai, N. (1990). Interconversion of aflatoxin B, and aflatoxicol by several fungi. Applied and Environmental Microbiology, 56(5), 1465-1470. Doi: 10.1128/aem.56.5.1465-1470.1990
NIA, National Innovation Agency, (2005). Yeast products: High quality of biotechnology. First ed., Specialty Biotech Co., Ltd., pp. 6-11.
Niderkorn, V., Boudra, H., & Morgavi, D. P. (2006). Binding of Fusarium mycotoxins by fermentative bacteria in vitro. Applied and Environmental Microbiology, 101, 849-856. Doi: 10.1111/j.1365-2672.2006.02958.x
Niderkorn, V., Morgavi, D. P., Aboab, B., Lemaire, M., & Boudra, H. (2009). Cell wall component and mycotoxin moieties involved in the binding of fumonisin B1 and B2 by lactic acid bacteria. Journal of Applied Microbiology, 106, 977-985. Doi: 10.1111/j.1365- 2672.2008.04065.x
Oatley, J. T., Rarick, M. D., Ji, G. E., & Linz, J. E. (2000). Binding of aflatoxin B1 to bifidobacteria in vitro. Journal of Food Protection, 63, 1133-1136. Doi: 10.4315/0362-028X-63.8.1133
Pandey, A. K., Sonker, N., & Singh, P. (2016). Efficacy of some essential oils against Aspergillus flavus with special reference to Lippia alba oil as an inhibitor of fungal proliferation and aflatoxin B1 production in green gram seeds during storage. Journal of Food Science, 81(4), M928-M934. Doi: 10.1111/1750-3841.13254
Piotrowska, M. (2021). Microbiological decontamination of mycotoxins: Opportunities and limitations. Toxins, 13(11), 819. Doi: 10.3390/toxins13110819
Pizzolitto, R. P., Bueno, D. J., Armando, M. R., Cavaglieri, L., Dalcero, A. M., & Salvano, M. A. (2011). Binding of aflatoxin B1 to lactic acid bacteria and Saccharomyces cerevisiae in vitro: A useful model to determine the most efficient microorganism, in: Guevara- Gonzalez, R. J. (Ed.), Aflatoxins - biochemistry and molecular biology. Chapter: 16, pp. 323-346
Pizzolitto, R. P., Salvano, M. A., & Dalcero, A. M. (2012). Analysis of fumonisin B1 removal by microorganisms in co-occurrence with aflatoxin B1 and the nature of the binding process. International Journal of Food Microbiology, 156(3), 214-221. Doi: 10.1016/j.ijfoodmicro.2012.03.024
Peltonen, K., El-Nezami, H., Haskard, C., Ahokas, J., & Salminen, S. (2001). Aflatoxin B1 binding by dairy strains of lactic acid bacteria and bifidobacteria. Journal of Dairy Science, 84, 2152-2156. Doi: 10.3168/jds.S0022-0302(01)74660-7
Petruzzi, L., Corbo, M. R., Sinigaglia, M., & Bevilacqua, A. (2016). Ochratoxin A removal by yeasts after exposure to simulated human gastrointestinal conditions. Journal of Food Science, 81(11), M2756-M2760. Doi: 10.1111/1750-3841.13518
Qiu, T., Wang H., Yang, Y., Yu, J., Ji, J., Sun, J.,Zhang, S., & Sun, X. (2021). Exploration of biodegradation mechanism by AFB1-degrading strain Aspergillus niger FS10 and its metabolic feedback. Food Control, 121, 107609. Doi: 10.1016/j.foodcont.2020.107609
Rahaie, S., Emam-Djomeh, Z., Razavi, S. H., & Mazaheri, M. (2010). Immobilized Saccharomayces cerevisiae as a potential aflatoxin decontaminating agent in pistachio nuts. Brazilian Journal of Microbiology, 41, 82-90. Doi: 10.1590/S1517-83822010000100014
Raju, M. V. L. N., & Devegowda, G. (2000). Influence of esterified-glucomannan on performance and organ morphology, serum biochemistry and haematology in broilers exposed to individual and combined mycotoxicosis (aflatoxin, ochratoxin and T-2 toxin). British Poultry Science, 41, 640-650. Doi: 10.1080/713654986
Roy, U., Batish, V. K., Grover, S., & Neelakantan, S. (1996). Production of antifungal substance by Lactococcus lactis subsp. lactis CHD-28.3. International Journal of Food Microbiology, 32, 27-34. Doi: 10.1016/0168- 1605(96)01101-4
Samuel, M. S., Sivaramakrishna, A., & Mehta, A. (2014). Degradation and detoxification of aflatoxin B1 by Pseudomonas putida. International Biodeterioration and Biodegradation, 86, Part C, 202-209. Doi: 10.1016/j.ibiod.2013.08.026
Santin, E., Paulilo, A. C., Maiorka, A., Nakaghi, L. S. O., Macan, M., de Silva, A. V. F., & Alessi, A. C. (2003). Evaluation of the efficiency of Saccharomyces cerevisiae cell wall to ameliorate the toxic effects of aflatoxin in broilers. International Journal of Poultry Science, 2(5), 341-344. Doi: 10.3923/ijps.2003.341.344
Santos, A., Marquina, D., Leal, J. A., & Peinado, J. M. (2000). (1→6)- β-D-glucan as cell wall receptor for Pichia membranifaciens killer toxin. Applied and Environmental Microbiology, 66, 1809-1813. Doi: 10.1128/AEM.66.5.1809-1813.2000
Shang, L., Bai, X., Chen, C., Liu, L., Li, M., Xia, X., & Wang, Y. (2019). Isolation and identification of a Bacillus megaterium strain with ochratoxin A removal ability and antifungal activity. Food Control, 106, 106743. Doi: 10.1016/j.foodcont.2019.106743
Shetty, P. H., & Jespersen, L. (2006). Saccharomyces cerevisiae and lactic acid bacteria as potential mycotoxin decontaminating agents. Trends in Food Science and Technology, 17, 48-55. Doi: 10.1016/j.tifs.2005.10.004
Shetty, P. H., Hald, B., & Jespersen, L. (2007). Surface binding of aflatoxin B1 by Saccharomyces cerevisiae strains with potential decontaminating abilities in indigenous fermented foods. International Journal of Food Microbiology, 113(1),                41-46.  Doi: 1016/j.ijfoodmicro.2006.07.013
Shu, X., Wang, Y., Zhou, Q., Li, M., Hu, H., Ma, Y.,Chen, X., Ni, J., Zhao, W., Huang, S., & Wu, L.  (2018).Biological degradation of aflatoxin B1 by cell-free extracts of Bacillus velezensis DY3108 with broad pH stability and excellent                thermostability. Toxins, 10, 330. Doi: 10.3390/toxins10080330
Teniola, O. D., Addo, P. A., Brost, I. M., Färber, P., Jany, K.-D., Alberts, J. F, van Zyl, W. H., Steyn, P. S., & Holzapfel, W. H. (2005). Degradation of aflatoxin B1 by cell-free extracts of Rhodococcus erythropolis and Mycobacterium fluoranthenivorans sp. nov. DSM44556T. International Journal of Food Microbiology, 105(2), 111-117. Doi: 10.1016/j.ijfoodmicro.2005.05.004
Topcu, A., Bulat, T., Wishah, R., & Boyac, I. H. (2010). Detoxification of aflatoxin B1 and patulin by Enterococcus faecium strains. International Journal of Food Microbiology, 139(3),  202-205. Doi: 10.1016/j.ijfoodmicro.2010.03.006
Vanhoutte, I., Audenaert, K., & Gelder, D. L. (2016). Biodegradation of mycotoxins: Tales from known and unexplored worlds. Frontiers in Microbiology, 7(561), 1-20. Doi: 10.3389/fmicb.2016.00561
Wang, L., Wu, J., Liu, Z., Shi, Y., Liu, J., Xu, X.,Hao, S., Mu, P., Deng, F., & Deng, Y. (2019). Aflatoxin B1 Degradation and detoxification by Escherichia coli CG1061 isolated from chicken cecum. Frontiers in harmacology, 9, 1-9. Doi: 10.3389/fphar.2018.01548
Watanakij, N., Visessanguan, W., & Petchkongkaew, A. (2020). Aflatoxin B1-degrading activity from Bacillus subtilis BCC 42005 isolated from fermented cereal products. Food Additives & Contaminants: Part A., 37, 1579-1589. Doi: 10.1080/19440049.2020.1778182
Yiannikouris, A., Franc¸ois, J., Poughon, L., Dussap, C.-G., Bertin, G., Jeminet, G., & Jouany, J. P. (2004a). Adsorption of zearalenone by β -D-D glucans in the Saccharomyces cerevisiae cell wall. Journal of Food Protection, 67, 1195-1200.  Doi: 10.4315/0362-028X-67.6.1195
Yiannikouris, A., Francois, J., Poughon, L., Dussap, C. G., Bertin, G., Jeminet, G., & Jouany, J. P. (2004b). Alkali extraction of beta-d-glucans from Saccharomyces cerevisiae cell wall and study of their adsorptive properties toward zearalenone. Journal of Agricultural and Food Chemistry, 52(11), 3666-3673. Doi: 10.1021/jf035127x
Yiannikouris, A., André, G., Buléon, A., Jeminet, G., Canet, I., François, J., Bertin, G., & Jouany, J. P. (2004c). Comprehensive conformational study of key interactions involved in zearalenone complexation with beta-D-glucans. Biomacromolecules, 5(6), 2176-2185. Doi: 10.1021/bm049775g
Zhang, J., Qin, X., Guo, Y., Zhang, Q., Ma, Q., Ji, C.,& Zhao, L. (2020). Enzymatic degradation of deoxynivalenol by a novel bacterium, Pelagibacterium halotolerans ANSP101. Food and Chemical Toxicology, 140, 111276. Doi: 10.1016/j.fct.2020.111276
Zhu, Y., Hassan, Y. I., Lepp. D., Shao, S., & Zhou, T. (2017). Strategies and methodologies for developing icrobial detoxification systems to mitigate mycotoxins. Toxins, 9(4), 1-26. Doi: 10.3390/toxins9040130