Improvement of biochemical properties of asparaginase by immobilization on cysteine functionalized magnetic Fe3O4@Au NPs

Document Type : Research Paper

Authors

1 Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Laboratory of Bioanalysis, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran

3 Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran

Abstract

L-Asparaginase converts L-asparagine to L-aspartic acid and causes cancer cells to starve. The main idea of the current study was to improve the biochemical properties of this enzyme using immobilization onto modified magnetic nano- particles (NPs). To this end, Fe3O4 NPs were synthesized, coated with an Au shell, and conjugated with cysteine. The formation of NPs and core-shell structures and their morphology were confirmed using Fourier Transform Infrared spectroscopy (FTIR), Energy Dispersive X-Ray (EDX), VU-Vis, Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM). Also, Circular Dichroism (CD) and fluorescence spectroscopy were employed for the analysis of the secondary and tertiary structures of the immobilized L-ASNase. The alterations in kinetic parameters of the immobilized enzyme were analyzed using a Lineweaver- Burk plot. The results of instrumental chemistry analysis confirmed the formation of NPs and core-shell structure, and cysteine binding with the core-shell. Based on CD and fluorescence results, no significant changes were observed in the secondary and tertiary structures of the immobilized enzyme compared to the free one. Kinetic parameters of the immobilized enzyme improved compared to the free enzyme so that Km decreased from 4.43±0.05 to 3.75±0.12 mM and Vmax increased from
187.23±11 to 224.78±16 μM min-1mg-1. Also, the stability of the immobilized enzyme improved with acidic and alkaline pH values compared to the free one at temperatures higher than 50 0C. In addition, the reusability of the immobilized enzyme was superior to the free enzyme, with the immobilized enzyme maintaining 72% of its activity after 15 cycles of catalytic reaction. The immobilized enzyme showed an 86% residual activity after 120 min incubation with trypsin, which was higher than the free enzyme (37%). According to the results of this study, immobilization of L-ASNase onto magnetic NPs can be an efficient strategy to enhance the biochemical properties of this enzyme.

Keywords

Main Subjects


Agrawal, S., & Kango, N. (2019). Development and catalytic characterization of L-ASNase nano- bioconjugates. International journal of biological macromolecules, 135, 1142-1150. doi: 10.1016/j.ijbiomac.2019.05.154
Ashrafi, H., Amini, M., Mohammadi-Samani, S., Ghasemi, Y., Azadi, A., Tabandeh, M. R., ... & Daneshamouz, S. (2013). Nanostructure L-ASNase-fatty acid bioconjugate: synthesis, preformulation study and biological assessment. International journal of biological macromolecules, 62, 180-187. doi: 10.1016/j.ijbiomac.2013.08.028
Ates, B., Ulu, A., Köytepe, S., Noma, S. A. A., Kolat, S., & Izgi, T. (2018). Magnetic-propelled Fe 3 O 4– chitosan carriers enhance L-ASNase catalytic activity: a promising strategy for enzyme immobilization. RSC advances, 8(63), 36063-36075. doi: 10.1039/C8RA06346J
Bahreini, E., Aghaiypour, K., Abbasalipourkabir, R., Mokarram, A. R., Goodarzi, M. T., & Saidijam, M. (2014). Preparation and nanoencapsulation of L-ASNase II in chitosan-tripolyphosphate nanoparticles and in vitro release study. Nanoscale research letters, 9(1), 1-13. doi: 10.1186/1556-276X-9-340
Bilal, M., Zhao, Y., Rasheed, T., & Iqbal, H. M. (2018). Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review. International journal of biological macromolecules, 120, 2530-2544. doi: 10.1016/j.ijbiomac.2018.09.025
Bilal, M., Zhao, Y., Rasheed, T., & Iqbal, H. M. (2018). Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review. International journal of biological macromolecules, 120, 2530-2544. doi: 10.1016/j.ijbiomac.2018.09.025
Chahardahcherik, M., Ashrafi, M., Ghasemi, Y., & Aminlari, M. (2020). Effect of chemical modification with carboxymethyl dextran on kinetic and structural properties of L-ASNase. Analytical biochemistry, 591, 113537. doi: 10.1016/j.ab.2019.113537
Datta, S., Christena, L. R., & Rajaram, Y. R. S. (2013). Enzyme immobilization: an overview on techniques and support materials. 3 Biotech, 3(1), 1-9. doi: 10.1007/s13205-012-0071-7
Dong, H., Li, J., Li, Y., Hu, L., & Luo, D. (2012).
Improvement of catalytic activity and stability of lipase by immobilization on organobentonite. Chemical Engineering Journal, 181, 590-596. doi: 10.1016/j.cej.2011.11.095
Federsel, H. J., Moody, T. S., & Taylor, S. J. (2021). Recent trends in enzyme immobilization—concepts for
expanding the biocatalysis toolbox. Molecules, 26(9), 2822. doi:10.3390/molecules26092822
Hariani, P. L., Faizal, M., Ridwan, R., Marsi, M., & Setiabudidaya, D. (2013). Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to removal procion dye. International Journal of Environmental Scienceand Development, 4(3), 336-340. doi:0.7763/IJESD. 2013.V4.366
Kamali, P., Zandi, M., Ghasemzadeh-Moghaddam, H., & Fani, M. (2022). Comparison between various biosensor methods for human T-lymphotropic virus-1 (HTLV-1) detection. Molecular Biology Reports, 49(2), 1513-1517. doi: 10.1007/s11033-021-06959-w
Kozenkova, E., Levada, K., Efremova, M. V., Omelyanchik, A., Nalench, Y. A., Garanina, A. S., ... & Rodionova, V. (2020). Multifunctional Fe3O4-Au nanoparticles for the MRI diagnosis and potential treatment of liver cancer. Nanomaterials, 10(9), 1646. doi: 10.3390/nano10091646
Lee, C. H., Jin, E. S., Lee, J. H., & Hwang, E. T.(2020). Immobilization and stabilization of enzyme in biomineralized calcium carbonate microspheres. Frontiers in Bioengineering and Biotechnology, 8, 553591. doi: 10.3389/fbioe.2020.553591
León Félix, L., Coaquira, J. A. H., Martínez, M. A. R.,Goya, G. F., Mantilla, J., Sousa, M. H., ... & Morais, P. C. (2017). Structural and magnetic properties of core-shell Au/Fe3O4 nanoparticles. Scientific reports, 7(1), 1-8. doi: 10.1038/srep41732
Narayana, K. J. P., Kumar, K. G., & Vijayalakshmi,M. (2008). L-ASNase production by Streptomyces albidoflavus. Indian Journal of Microbiology, 48(3), 331-336. doi: 10.1007/s12088-008-0018-1Noma, S. A. A., Yılmaz, B. S., Ulu, A., Özdemir, N., & Ateş, B. (2021). Development of L-ASNase@ hybrid nanoflowers (L-ASNase@ HNFs) reactor system with enhanced enzymatic reusability and stability. Catalysis Letters, 151(4), 1191-1201. doi:  10.1007/s10562-020-03362-1
Orhan, H., & Aktaş Uygun, D. (2020). Immobilization of L-ASNase on magnetic nanoparticles for cancer treatment. Applied biochemistry and biotechnology, 191(4), 1432-1443. doi: 10.1007/s12010-020-03276-z
Possarle, L. H. R. R., Junior, J. R. S., & Caseli, L. (2020). Insertion of carbon nanotubes in Langmuir-Blodgett films of stearic acid and L-ASNase enhancing the catalytic performance. Colloids and Surfaces B: Biointerfaces, 192, 111032. doi: 10.1016/j.colsurfb.2020.111032
Salehizadeh, H., Hekmatian, E., Sadeghi, M., & Kennedy, K. (2012). Synthesis and characterization of core- shell Fe3O4-gold-chitosan nanostructure. Journal of nanobiotechnology, 10(1), 1-7. Doi:10.1186/1477-3155-10-3
Salihov, S. V., Ivanenkov, Y. A., Krechetov, S. P., Veselov, M. S., Sviridenkova, N. V., Savchenko, A. G., & Majouga, A. G. (2015). Recent advances in the synthesis of Fe3O4@ AU core/shell nanoparticles. Journal of magnetism and magnetic materials, 394, 173-178.
Sedki, M., Zhao, G., Ma, S., Jassby, D., & Mulchandani, A. (2021). Linker-Free Magnetite-Decorated Gold Nanoparticles (Fe3O4-Au): Synthesis, Characterization, and Application for Electrochemical Detection of Arsenic (III). Sensors, 21(3), 883. doi: 10.3390/s21030883
Soares, A. L., Guimaraes, G. M., Polakiewicz, B., de Moraes Pitombo, R. N., & Abrahão-Neto, J. (2002). Effects of polyethylene glycol attachment on physicochemical and biological stability of E. coli L-ASNase. International journal of pharmaceutics, 237(1-2), 163-170. doi: 10.1016/S0378-5173(02)00046-7
Sohrabi, N., Rasouli, N., & Torkzadeh, M. (2014). Enhanced stability and catalytic activity of immobilized α- amylase on modified Fe3O4 nanoparticles. Chemical EngineeringJournal, 240, 426-433. doi: 10.1016/j.cej.2013.11.059
Tamer, U., Gündoğdu, Y., Boyacı, İ. H., & Pekmez, K. (2010). Synthesis of magnetic core–shell Fe3O4–Au nanoparticle for biomolecule immobilization and detection. Journal of Nanoparticle Research, 12(4), 1187- 1196. dio: 10.1007/s11051-009-9749-0
Verma, M. L., Chaudhary, R., Tsuzuki, T., Barrow, C. J., & Puri, M. (2013). Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis. Bioresource technology, 135, 2-6. doi: 10.1016/j.biortech.2013.01.047
Wriston, J. C., & Yellin, T. O. (1973). L-ASNase: a review. Adv Enzymol Relat Areas Mol Biol, 39, 185-248.
doi: 10.1002/9780470122846.ch3.
Yazdani, F., & Seddigh, M. (2016). Magnetite nanoparticles synthesized by co-precipitation method: The effects of various iron anions on specifications. Materials Chemistry and Physics, 184, 318-323.
Zhang, T., Lei, L., Tian, M., Ren, J., Lu, Z., Liu, Y., & Liu, Y. (2021). Multifunctional Fe3O4@ Au supraparticle as a promising thermal contrast for an ultrasensitive lateral flow immunoassay. Talanta, 222, 121478.