Agrawal, S., & Kango, N. (2019). Development and catalytic characterization of L-ASNase nano- bioconjugates. International journal of biological macromolecules, 135, 1142-1150. doi:
10.1016/j.ijbiomac.2019.05.154
Ashrafi, H., Amini, M., Mohammadi-Samani, S., Ghasemi, Y., Azadi, A., Tabandeh, M. R., ... & Daneshamouz, S. (2013). Nanostructure L-ASNase-fatty acid bioconjugate: synthesis, preformulation study and biological assessment. International journal of biological macromolecules, 62, 180-187. doi:
10.1016/j.ijbiomac.2013.08.028
Ates, B., Ulu, A., Köytepe, S., Noma, S. A. A., Kolat, S., & Izgi, T. (2018). Magnetic-propelled Fe 3 O 4– chitosan carriers enhance L-ASNase catalytic activity: a promising strategy for enzyme immobilization. RSC advances, 8(63), 36063-36075. doi:
10.1039/C8RA06346J
Bahreini, E., Aghaiypour, K., Abbasalipourkabir, R., Mokarram, A. R., Goodarzi, M. T., & Saidijam, M. (2014). Preparation and nanoencapsulation of L-ASNase II in chitosan-tripolyphosphate nanoparticles and in vitro release study. Nanoscale research letters, 9(1), 1-13. doi: 10.1186/1556-276X-9-340
Bilal, M., Zhao, Y., Rasheed, T., & Iqbal, H. M. (2018). Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review. International journal of biological macromolecules, 120, 2530-2544. doi:
10.1016/j.ijbiomac.2018.09.025
Bilal, M., Zhao, Y., Rasheed, T., & Iqbal, H. M. (2018). Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review. International journal of biological macromolecules, 120, 2530-2544. doi:
10.1016/j.ijbiomac.2018.09.025
Chahardahcherik, M., Ashrafi, M., Ghasemi, Y., & Aminlari, M. (2020). Effect of chemical modification with carboxymethyl dextran on kinetic and structural properties of L-ASNase. Analytical biochemistry, 591, 113537. doi:
10.1016/j.ab.2019.113537
Datta, S., Christena, L. R., & Rajaram, Y. R. S. (2013). Enzyme immobilization: an overview on techniques and support materials. 3 Biotech, 3(1), 1-9. doi: 10.1007/s13205-012-0071-7
Dong, H., Li, J., Li, Y., Hu, L., & Luo, D. (2012).
Improvement of catalytic activity and stability of lipase by immobilization on organobentonite. Chemical Engineering Journal, 181, 590-596. doi:
10.1016/j.cej.2011.11.095
Federsel, H. J., Moody, T. S., & Taylor, S. J. (2021). Recent trends in enzyme immobilization—concepts for
expanding the biocatalysis toolbox. Molecules, 26(9), 2822. doi:
10.3390/molecules26092822
Hariani, P. L., Faizal, M., Ridwan, R., Marsi, M., & Setiabudidaya, D. (2013). Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to removal procion dye. International Journal of Environmental Scienceand Development, 4(3), 336-340. doi:0.7763/IJESD. 2013.V4.366
Kamali, P., Zandi, M., Ghasemzadeh-Moghaddam, H., & Fani, M. (2022). Comparison between various biosensor methods for human T-lymphotropic virus-1 (HTLV-1) detection. Molecular Biology Reports, 49(2), 1513-1517. doi: 10.1007/s11033-021-06959-w
Kozenkova, E., Levada, K., Efremova, M. V., Omelyanchik, A., Nalench, Y. A., Garanina, A. S., ... & Rodionova, V. (2020). Multifunctional Fe3O4-Au nanoparticles for the MRI diagnosis and potential treatment of liver cancer. Nanomaterials, 10(9), 1646. doi:
10.3390/nano10091646
Lee, C. H., Jin, E. S., Lee, J. H., & Hwang, E. T.(2020). Immobilization and stabilization of enzyme in biomineralized calcium carbonate microspheres. Frontiers in Bioengineering and Biotechnology, 8, 553591. doi: 10.3389/fbioe.2020.553591
León Félix, L., Coaquira, J. A. H., Martínez, M. A. R.,Goya, G. F., Mantilla, J., Sousa, M. H., ... & Morais, P. C. (2017). Structural and magnetic properties of core-shell Au/Fe3O4 nanoparticles. Scientific reports, 7(1), 1-8. doi: 10.1038/srep41732
Narayana, K. J. P., Kumar, K. G., & Vijayalakshmi,M. (2008). L-ASNase production by Streptomyces albidoflavus. Indian Journal of Microbiology, 48(3), 331-336. doi: 10.1007/s12088-008-0018-1Noma, S. A. A., Yılmaz, B. S., Ulu, A., Özdemir, N., & Ateş, B. (2021). Development of L-ASNase@ hybrid nanoflowers (L-ASNase@ HNFs) reactor system with enhanced enzymatic reusability and stability. Catalysis Letters, 151(4), 1191-1201. doi: 10.1007/s10562-020-03362-1
Orhan, H., & Aktaş Uygun, D. (2020). Immobilization of L-ASNase on magnetic nanoparticles for cancer treatment. Applied biochemistry and biotechnology, 191(4), 1432-1443. doi: 10.1007/s12010-020-03276-z
Possarle, L. H. R. R., Junior, J. R. S., & Caseli, L. (2020). Insertion of carbon nanotubes in Langmuir-Blodgett films of stearic acid and L-ASNase enhancing the catalytic performance. Colloids and Surfaces B: Biointerfaces, 192, 111032. doi:
10.1016/j.colsurfb.2020.111032
Salehizadeh, H., Hekmatian, E., Sadeghi, M., & Kennedy, K. (2012). Synthesis and characterization of core- shell Fe3O4-gold-chitosan nanostructure. Journal of nanobiotechnology, 10(1), 1-7. Doi:10.1186/1477-3155-10-3
Salihov, S. V., Ivanenkov, Y. A., Krechetov, S. P., Veselov, M. S., Sviridenkova, N. V., Savchenko, A. G., & Majouga, A. G. (2015). Recent advances in the synthesis of Fe3O4@ AU core/shell nanoparticles. Journal of magnetism and magnetic materials, 394, 173-178.
Sedki, M., Zhao, G., Ma, S., Jassby, D., & Mulchandani, A. (2021). Linker-Free Magnetite-Decorated Gold Nanoparticles (Fe3O4-Au): Synthesis, Characterization, and Application for Electrochemical Detection of Arsenic (III). Sensors, 21(3), 883. doi:
10.3390/s21030883
Soares, A. L., Guimaraes, G. M., Polakiewicz, B., de Moraes Pitombo, R. N., & Abrahão-Neto, J. (2002). Effects of polyethylene glycol attachment on physicochemical and biological stability of E. coli L-ASNase. International journal of pharmaceutics, 237(1-2), 163-170. doi:
10.1016/S0378-5173(02)00046-7
Sohrabi, N., Rasouli, N., & Torkzadeh, M. (2014). Enhanced stability and catalytic activity of immobilized α- amylase on modified Fe
3O
4 nanoparticles. Chemical EngineeringJournal, 240, 426-433. doi:
10.1016/j.cej.2013.11.059
Tamer, U., Gündoğdu, Y., Boyacı, İ. H., & Pekmez, K. (2010). Synthesis of magnetic core–shell Fe3O4–Au nanoparticle for biomolecule immobilization and detection. Journal of Nanoparticle Research, 12(4), 1187- 1196. dio: 10.1007/s11051-009-9749-0
Verma, M. L., Chaudhary, R., Tsuzuki, T., Barrow, C. J., & Puri, M. (2013). Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis. Bioresource technology, 135, 2-6. doi:
10.1016/j.biortech.2013.01.047
Wriston, J. C., & Yellin, T. O. (1973). L-ASNase: a review. Adv Enzymol Relat Areas Mol Biol, 39, 185-248.
doi: 10.1002/9780470122846.ch3.
Yazdani, F., & Seddigh, M. (2016). Magnetite nanoparticles synthesized by co-precipitation method: The effects of various iron anions on specifications. Materials Chemistry and Physics, 184, 318-323.
Zhang, T., Lei, L., Tian, M., Ren, J., Lu, Z., Liu, Y., & Liu, Y. (2021). Multifunctional Fe3O4@ Au supraparticle as a promising thermal contrast for an ultrasensitive lateral flow immunoassay. Talanta, 222, 121478.