Protease production using Bacillus licheniformis by submerged fermentation

Document Type : Research Paper

Authors

1 Biotechnology Department, Iranian Research Organization for Science and Technology

2 Pilot of Biotechnology Department, Pasteur Institute of Iran, Pasteur Ave., Tehran, Iran

Abstract

Abstract
     Enzymes, such as protease, occupy a pivotal position in the world of enzymes with respect to their applications in both physiological and commercial applications. Bacillus, like Bacillus licheniformis, produce protease and was used throughout the present study. The Bacillus licheniformis is a potential microorganism for producing proteins with various functions, including protease with substantial activity, effective pH, and temperature tolerance, at laboratory and industrial scales. This study investigated the effect of several temperatures ranging from 25-50 οC, pH ranging from 7-10.5, shaker speeds of 100-200, and inoculum concentrations of 3-12 %V/V on enzyme production. Results showed that cultivating the medium at about pH (8.5), a temperature of 35 οC, and a shaker gyratory speed of 180 rpm influenced protease production. Firstly, it was found that using yeast extract, soybean meal corn, and steep liquor (powder) as nitrogen sources also enhanced protease production. Furthermore, cornstarch and glucose of 3 %W/V were found to be effective as a carbon source for protease production. The protease stability was retained for almost 35 minutes, heating at 60 οC and pH 8.5, and as heating continued at the same temperature and pH, the enzyme had 40% of its activity. Secondly, the effect of different metal ions types on the stability of the partially purified protease is reported. It was found that the protease activity at 60 ± 0.5 οC, pH 9.5, and the presence of 15 mM CaCl2 and 10 mM NaCl during an hour of treatment retained approximately 40 percent of its activity. Since a batch period of 24 protease production showed similar proteases activity as a  48 h operation,  the following fermentation was conducted within 24 h. The partially purified protease had sound stability in the alkaline pH of 9-9.5 and temperature range of 60 ±0.5 οC in the presence of certain ions like calcium and sodium salt.

Keywords

Main Subjects


  1. Kennedy J. F. (1987) Enzyme Technology In: Biotechnology Rehm HJ, & Reed G edited by Kennedy J. F., VCH Publishers, F. R. Germany, 7a, 37-162.
  2. Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 62(3), 597-635. doi: 1007/s12010-017-2427-2.
  3. Outtrup, H., & Boyce, C. O. L. (1990). Microbial proteinases and biotechnology. In Microbial Enzymes and Biotechnology (pp. 227-254). Springer, Dordrecht.
  4. Fogarty, M. & Kelly, C. T. (Eds.). (2012). Microbial Enzymes and Biotechnology. Springer Science & Business Media.
  5. Malathi, S., & Chakraborty, R. (1991). Production of alkaline protease by a new Aspergillus flavus isolate under solid-substrate fermentation conditions for use as a depilation agent. Applied and Environmental Microbiology, 57(3), 712-716. doi: org/10.1128/aem.57.3.712-716.1991
  6. Jisha, V. N., Smitha, R. B., Pradeep, S., Sreedevi, S., Unni, N., Sajith, S., Priji, P., Josh, M. S., & Benjaminn,S. (2013). Versatility of microbial proteases Advances in Enzyme Research, 1(3), 39–51.doi: 10.4236/aer.2013.13005
  7. Contesini, F. J., Melo, R. R. D., & Sato, H. H. (2018). An overview of Bacillus proteases: from production to application. Critical Reviews in Biotechnology, 38(3), 321-329 doi: org/10.1080/07388551.2017.1354354
  8. Johnvesly, B., & Naik, G. R. (2001). Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus JB-99 in a chemically defined medium. Process Biochemistry, 37(2), 139-144. doi: org/10.1016/S0032-9592(01)00191-1
  9. Crueger W, Crueger A. (1990) In: Biotechnology: A Textbook for Industrial Microbiology 2nd ed. Science Publishers, 203-205.
  10. Uyar, F., & Baysal, Z. (2004). Production and optimization of process parameters for alkaline protease production by a newly isolated Bacillus under solid state fermentation. Process Biochemistry, 39(12), 1893-1898. doi: org/10.1016/j.procbio.2003.09.016
  11. Moreira, A., Porto, T. S., Teixeira, M. F. S., Porto, L. F., & Lima Filho, J. L. (2003). New alkaline protease from Nocardiopsis sp.: partial purification and characterization. Process Biochemistry, 39(1), 67-72. doi: org/10.1016/S0032-9592(02)00312-6
  12. Kalisz, H. M. (1988). Microbial Proteinases. Enzyme studies, 1-65.
  13. Gerhartz, W. (1990). Enzymes in industry: production and applications. Vch Verlagsgesellschaft mbH. 108-117.
  14. Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular iology Reviews, 62, 597–635 doi: 10.1128/mmbr.62.3.597-635.1998
  15. Godfrey, T., & Reichelt, J. (1982). Industrial enzymology: the application of enzymes in industry.
  16. Vos, P., Garrity, G., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., Schleifer, K. H. & Whitman, W. B. (Eds.). (2011). Bergey's manual of systematic bacteriology: Volume 3: The Firmicutes (Vol. 3). Springer Science & Business Media. doi: 10:1007/b92997
  17. Singh, S., & Bajaj, B. K. (2017). Potential application spectrum of microbial proteases for clean and green industrial Energy, Ecology and Environment, 2(6), 370-386. doi:  10.1007/s40974-017-0076-5
  18. Kunitz, M. (1947). Crystalline soybean trypsin inhibitor: II. General properties. The Journal of General Physiology, 30(4), 291-310.
  19. Lowry, H., Rosebrough, N. J., Farr AL, & Randall, J. (1951) Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry. 193: 265-275.
  20. Suaifan GA, Alhogail S, & Zourob M. (2017). Rapid and low-cost biosensor for the detection of Staphylococcus aureus..Biosensor Bioelectronic. 15 (90):230-237. doi: 10.1016/j.bios.2016.11.047. Epub 2016 Nov 21
  21. Horikoshi, K. (1971). Production of alkaline enzymes by alkalophilic microorganisms: Part I. Alkaline protease produced by bacillus 221. Agricultural and Biological Chemistry, 35(9), 1407-1414.
  22. Bhosale, S. H., Rao, M. B., Deshpande, V. V., & Srinivasan, M. C. (1995). Thermostability of high-activity alkaline protease from Conidiobolus coronatus (NCL 86.8. 20). Enzyme and Microbial Technology, 17(2), 136-139. doi: org/10.1016/0141-0229(94)00045-S
  23. Gray, C. J. (1993). Stabilization of enzymes with soluble additives. Thermostability Enzymes, 8, 124-143
  24. Rose, A. H. (1980). Economic Microbiology: Microbial Enzymes and Bioconversion. Academic Press Inc. London, 5(144), 50-112
  25. Payne, W. (1980). Microorganisms and Nitrogen Sources: Transport and Utilization of Amino Acids, Peptides, Proteins, and Related Substrates. John Wiley & Sons.
  26. Fujiwara, N., & Yamamoto, K. (1987). Production of alkaline protease in a low-cost medium by alkalophilic Bacillus and properties of the enzyme. Journal of Fermentation Technology, 65(3), 345-348. doi: org/10.1016/0385-6380(87)90098-7
  27. Frankena, , van Verseveld, H. W., & Stouthamer, A. (1985). A continuous culture study of the bioenergetic aspects of growth and production of exocellular protease in Bacillus licheniformis. Applied Microbiology and Biotechnology, 22(3), 169-176. doi: org/10.1007/BF00253604
  28. Glenn, A. R. (1976). Production of extracellular proteins by Annual Review of Microbiology, 30(1), 41-62. doi: org/10.1146/annurev.mi.30.100176.000353
  29. Ingram, , Holland, K. T., Gowland, G., & Cunliffe, J. (1983). Studies of the extracellular proteolytic activity produced by Propionibacterium acnes. Journal of Applied Bacteriology, 54(2), 263-271. doi: org/10.1111/j.1365- 2672.1983.tb02616.x
  30. Razak, A., Samad, M. Y. A., Basri, M., Yunus, W. Z. W.,  Ampon,  K.,  &  Salleh,  A.  B.  (1994). Thermostable extracellular protease of Bacillus stearothermophilus: factors affecting its production. World Journal of Microbiology and Biotechnology, 10(3), 260- doi: org/10.1007/BF00414858
  31. Fujita, Y. (2009). Carbon catabolite control of the metabolic network in Bacillus subtilis. Bioscience, Biotechnology, and Biochemistry, 73 (2), 245–59. http://doi.org/10.1271/bbb.80479
  32. Wiegand, S., Voigt, B., Albrecht, D., Bongaerts, J., Evers, S., Hecker, M., & Liesegang, H. (2013). Fermentation stage-dependent adaptations of Bacillus licheniformis during enzyme production. Microbial Cell Factories, 12, http://doi.org/10.1186/1475-2859-12-120
  33. Gessesse, A., & Gashe, B. A. (1997). Production of alkaline protease by an alkaliphilic bacteria isolated from an alkaline soda Biotechnology Letters, 19(5), 479- 481. doi.org/10.1023/A:1018308513853
  34. Bhunia, B., Basak, B., & Dey, (2012). A review on production of serine alkaline protease by Bacillus spp. Journal of Biochemical Technology, 3(4), 448-457.
  35. Aunstrup K, Farum, Andersen O. (1974) Patent Number US 3, 827, 933.
  36. Kole, M. M., Draper, I., & Gerson, D. F. (1988). Production of protease by Bacillus subtilis using simultaneous control of glucose and ammonium concentrations. Journal of Chemical Technology & Biotechnology, 41(3), 197-206. doi: org/10.1002/jctb.280410305
  37. Ferrari, E., Jarnagin, A. S., & Schmidt, B. F. (1993). Commercial production of extracellular enzymes. Bacillus subtilis and other gram‐positive bacteria: Biochemistry, physiology, and molecular genetics, 917-937. doi: org/10.1128/9781555818388.ch62
  38. Dunn GM. (1985). Nutritional requirements of microorganisms in Comprehensive Biotechnology, ed., by Young M.M, Pergamon Press, 1. 113-126.
  39. Mabrouk, S.S., Hashem, A.M., El-Shayeb, N.M.A., Ismail, A.M.S., & Abdel-Fattah, A. F. (1999) Optimization of alkaline protease productivity by Bacillus licheniformis Bioresource Technology. 69, 155–159. doi: 10.1016/S0960- 8524(98)00165-5.
  40. Ferrero, A., Castro, G. R., Abate, C. M., Baigori, M. D., & Sineriz, F. (1996). Thermostable alkaline proteases of Bacillus licheniformis MIR 29: isolation, production and characterization. Applied Microbiology and Biotechnology, 45(3),327-332. doi: org/10.1007/s002530050691
  41. Haki, G. D., & Rakshit, S. K. (2003). Developments in industrially important thermostable enzymes: a Bioresource Technology, 89(1), 17-34. doi: org/10.1016/S0960-8524(03)00033-6
  42. Nascimento, C. A. D., & Martins, M. L. L. (2004). Production and properties of an extracellular protease from thermophilic Bacillus sp. Brazilian Journal of Microbiology, 35, 91-96. doi: 10.1590/S1517-83822004000100015.
  43. Sharma, , Rao, C. L. S. N., Ball, B. K., & Hasija, S. (1996). Characteristics of extracellular proteases produced by Bacillus laterosporus and Flavobacterium sp. isolated from gelatin factory effluents. World Journal of Microbiology and Biotechnology, 12(6), 615-617. doi: org/10.1007/BF00327724
  44. Manachini, P. , & Fortina, M. G. (1998). Production in sea-water of thermostable alkaline proteases by a halotolerant strain of Bacillus licheniformis. Biotechnology Letters, 20(6), 565-568. doi: org/10.1023/A:1005349728182
  45. Hameed, A., Natt, M. A., & Evans, C. S. (1996). Production of alkaline protease by a new Bacillus subtilis isolate for use as a bating enzyme in leather treatment. World Journal of Microbiology and Biotechnology, 12(3), 289-291. doi: org/10.1007/BF00360930
  46. Tang, M., Lakay, F. M., Shen, W., Shao, W. L.,Fang, H. Y., Prior, B. A., Wang, Z.X. & Zhuge, J. (2004). Purification and characterisation of an alkaline protease used in tannery industry from Bacillus licheniformis. Biotechnology Letters, 26(18), 1421-1424. doi: org/10.1023/B: BILE.0000045642.19299.3f
  47. Gupta, R., Gupta, K., Saxena, R. K., & Khan, S. (1999). Bleach-stable, alkaline protease from Bacillus Biotechnology Letters, 21(2), 135-138. doi.org/10.1023/A:1005478117918
  48. Takami, H., Akiba, T., & Horikoshi, K. (1989). Production of extremely thermostable alkaline protease from Bacillus no. AH-101. Applied Microbiology and Biotechnology, 30(2), 120-124. doi.org/10.1007/BF00263997
  49. Ghorbel-Frikha, B., Sellami-Kamoun, A., Fakhfakh, N., Haddar, A., Manni, L., & Nasri, M. (2005). Production and purification of a calcium-dependent protease from Bacillus cereus Journal of Industrial Microbiology andBiotechnology,32(5),186-194. Doi:.org/10.1007/s10295-005-0228-z
  50. Stoner, M. R., Dale, D. A., Gualfetti, P. J., Becker, T., Manning, M. C., Carpenter, J. F., & Randolph, T. W. (2004). Protease autolysis in heavy-duty liquid detergent formulations: effects of thermodynamic stabilizers and protease Enzyme and Microbial Technology, 34(2), 114-125. doi:org/10.1016/j.enzmictec.2003.09.008
  51. Voorddoun,, G., Miio., C.,& Roche, R.S.(1974) Role of bound calcium ions in thermostable, proteolytic Separation of intrinsic and calcium ion contributions to the kinetic thermal stability. Biochemistry. 1976, 15, 17, 3716–3724 https://doi.org/10.1021/bi00662a012
  52. Eijsink,,VGH,,Matthews, BW, & Vriend,. (2011). The role of calcium ions in the stability and instability of a thermolysin-like protease Protein Science. 20 (8): 1346–1355. doi: 10.1002/pro.670
  53. Dong, , Gao, S., Han, S. P., & Cao, S. G. (1999). Purification and characterization of a Pseudomonas sp. lipase and its properties in non‐aqueous media. Biotechnology and Applied Biochemistry, 30(3), 251-256. doi: org/10.1111/j.1470-8744. 1999.tb00778.x