Optimization of nutritional factors and copper on laccase production by Pleurotus florida

Document Type : Research Paper

Authors

1 Instructor and PhD student, Department of Plant Protection, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

2 Assistant professor, Department of Plant Protection, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran,

3 Associate professor, Department of Plant Protection, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran

Abstract

Laccases as lignocellulolytic enzymes are commonly produced by submerged fermentation, but for more constructive production, it should be preceded by nutritional factors suitable for the fungi’s growth. In the present study, the overproduction of laccase activity resulting from nutritional factor interactions was studied in Pleurotus florida, a white-rot fungi. Response surface methodology (RSM) based on the Box-Behnken factorial design (BBD) was performed to optimize the interaction of glucose and yeast extract concentrations to maximum enzyme activity with and without copper sulfate as an inducer. The results show a quadratic model with a very low p-value (<0.0001) to explain the changes in laccase production as a function of glucose, yeast extract, and copper sulfate concentrations. Based on the coefficient of determination (R2) and mean absolute error, the RSM model provided a good quality prediction for the laccase production with all independent variables. The findings explain that a 4.4-fold increase in laccase activity occurs in the presence of copper compared to cultures without copper with an optimal concentration of glucose and yeast extract as carbon and nitrogen sources, respectively. Maximum laccase activity (5.28 UmL-1) was obtained using optimized conditions (18.70 gL-1 glucose, 8.22 gL-1 yeast extract, and 0.93 mM copper sulfate). This finding could be used to induce high laccase production on a large scale for biomass changeover systems.

Keywords

Main Subjects


[1] Bak, J. S., Ko, J. K., Han, Y. H., Lee, B. C., Choi, I. G., Kim, K. H. (2009). Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment. Bioresource Technology, 100 (3), 1285-1290. Doi: 10.1016/j.biortech.2008.09.010.
[2] Baldrian, P., Gabriel, J. (2002). Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiology Letters, 206, 69-74. Doi: 10.1016/S0378-1097(01)00519-5.
[3] Carbone, I., Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91 (3), 553-556. Doi: 10.2307/3761358.
[4] Chmelová, D., Ondrejovič, M. (2016). Purification and characterization of extracellular laccase produced by Ceriporiopsis subvermispora and decolorization of triphenylmethane dyes. Journal of Basic Microbiology, 56, 1173- 1182. Doi: 10.1002/jobm.201600152.
[5]Collins, P. J., Dobson, A. (1997). Regulation of laccase gene transcription in Trametes versicolor. Applied and Environmental Microbiology, 63, 3444-3450. Doi: 10.1128/aem.63.9.3444-3450.
[6]Dekker, R. F., Barbosa, A. M., Giese, E. C., Godoy, S. D., Covizzi, L. G. (2007). Influence of nutrients on enhancing laccase production by Botryosphaeria rhodina MAMB-05. International Microbiology, 10, 177-185. Doi: 10.2436/20.1501. 01.25.
[7]DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytic Chemystry, 28, 350-356. Doi: 10.1021/ac60111a017.
[8] Durán-Sequeda, D., Suspesm, D., Maestre, E., Alfaro, M., Perez, G., Ramírez, L., Pisabarro, A. G., Sierra, R. (2022). Effect of nutritional factors and copper on the regulation of laccase enzyme production in Pleurotus ostreatus. Journal of Fungi, 8, 7. Doi.org/10.3390/jof8010007.
[9] El-Batal, A. I., Elkenawy, N. M., Yassin, A. S., Amin, M. A. (2015). Laccase production by Pleurotus ostreatus and its application in synthesis of gold nanoparticles. Biotechnology Reports, 5, 31-39. Doi: 10.1016/j.btre.2014.11.001.
[10] Faraco, V., Giardina, P., Sannia, G. (2003). Metal-responsive elements in Pleurotus ostreatus laccase gene promoters. Microbiology, 149, 2155-2162. Doi: 10.1099/mic.0.26360-0
[11] Fernández-Fueyo, E., Ruiz-Dueñas, F. J., López-Lucendo, M. F., Pérez-Boada, M. Rencoret, J. Gutiérrez, A. Pisabarro, A. G. Ramírez, L., Martínez, A. T. (2016). A secretomic view of woody and nonwoody lignocellulose degradation by Pleurotus ostreatus. Biotechnology for Biofuels, 9, 49. Doi: 10.1186/s13068-016-0462-9.
[12] Galhaup, C., Wagner, H., Hinterstoisser, B., Haltrich, D. (2002a). Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens. Enzyme and Microbial Technology, 30, 529-536. Doi: 10.1016/S0141-0229(01)00522-1.
[13] Galhaup, C., Goller, S., Peterbauer, C. K. (2002b). Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology, 148, 2159-2169. Doi: 10.1099/00221287-148-7-2159.
[14] Giardina, P., Faraco, V., Pezzella, C. (2010). Laccases: a neverending story. Cellular and Molecular Life Sciences, 67, 369-385. Doi: 10.1007/s00018-009-0169-1.
[15] Gonzalez, J. C., Medina, S. C., Rodriguez, A., Osma, J. F., AlmécigaDíaz, C. J. (2013). Production of Trametes pubescens laccase under submerged and semi-solid culture conditions on agro-industrial wastes. PLOS One, 8: 1-9. Doi: 10.1371/journal.pone.0073721. 48 S.J.
[16] Guo, C., Zhao, L., Wang, F., Lu, J., Ding, Z. Shi, G. (2017). β-Carotene from yeasts enhances laccase production of Pleurotus eryngii var. ferulae in co-culture. Front. Microbiology, 8, 1101. Doi: 10.3389/fmicb.2017.01101. Doi: 10.3389/fmicb.2017.01101.
[17] Hazuchová, M., Chmelová, D., Ondrejovic, M. (2017). The optimization of propagation medium for the increase of laccase production by the white-rot fungus Pleurotus ostreatus. Nova Biotechnologica et Chimica, 16, 113-123. Doi: 10.1515/nbec-2017-0016.
[18] Kachlishvili, E., Penninckx, M. J., Tsiklauri, N., Elisashvili, V. (2006). Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidiomycetes under solid-state cultivation. World Journal of Microbiology and Biotechnology, 22, 391-397. Doi: 10.1007/s11274-005-9046-8.
[19] Karp, S. G., Faraco, V., Amore, A., Letti, L. A. J., Soccol, V. T., Soccol, C. R. (2015). Statistical optimization of laccase production and delignification of sugarcane bagasse by Pleurotus ostreatus in solid-state fermentation. BioMed Research International, 181204. Doi: 10.1155/2015/181204.
[20] Kneževic, A., Milovanovic, I., Stajic, M., Vukojevic, J. (2013). Potential of Trametes species to degrade lignin. International Biodeterioration and Biodegradation, 85, 52-56. Doi: 10.1016/j.ibiod.2013.06.017.
[21] Kudanga, T., Le Roes-Hill, M. (2014). Laccase applications in biofuels production: current status and future prospects. Applied Microbiology and Biotechnology, 98, 6525-6542. Doi: 10.1007/s00253-014-5810-8.
[22] Kues, U., Rühl, M. (2011). Multiple multi-copper oxidase gene fami- € lies in basidiomycetes - what for? Curr Genom, 12, 72-94. Doi: 10.2174/138920211795564377.
[23]  Liu, L., Lin, Z., Zheng, T., Lin, L., Zheng, C., Lin, Z., Wang, S., Wang, Z. (2009). Fermentation optimization and characterization of the laccase from Pleurotus ostreatus strain 10969. Enzyme and Microbial Technology, 44, 426-433. Doi: 10.1016/j.enzmictec.2009.02.008.
[24] Minussi, R. C., Pastore, G. M., Duran, N. (2002). Potential applications of laccase in the food industry. Trends in Food Science and Technology, 13, 205-216. Doi: 10.1016/S0924-2244(02)00155-3.
[25] Murugesan, K., Kim, Y. M., Jeon, J.R. (2009). Effect of metal ions on reactive dye decolorization by laccase from Ganoderma lucidum. Journal of Hazardous Materials, 168, 523-529. Doi: 10.1016/j.jhazmat.2009.02.075.
[26] Ohm, R. A., Riley, R., Salamov, A., Min, B., Choi, I. -G., Grigoriev, I. V. (2014). Genomics of wood-degrading fungi. Fungal Genetics and Biology, 72, 82-90. Doi: 10.1016/j.fgb.2014.05.001.
[27] Palmieri, G., Giardina, P., Bianco, C., Fontanella, B., Sannia, G. (2000). Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Applied and Environmental Microbiology, 66, 920–924. Doi: 10.1128/aem.66.3.920-924.2000.
[28] Periasamy, R., Palvannan, T. (2010). Optimization of laccase production by Pleurotus ostreatus IMI 395545 using the Taguchi DOE methodology. Journal of Basic Microbiology, 50, 548-556. Doi: 10.1002/jobm.201000095
[29] Piscitelli, A., Giardina, P., Lettera, V. (2011). Induction and transcriptional regulation of laccases in fungi. Current Genom, 12, 104-112. Doi: 10.2174/138920211795564331.
[30]Ryu, S. H., Lee, A. Y., Kim, M. (2008). Molecular characteristics of two laccase from the basidiomycete fungus Polyporus brumalis. Journal of Microbiology, 46, 62-69. Doi: 10.1007/s12275-007-0110-y.
[31] Sánchez, C. (2010). Cultivation of Pleurotus ostreatus and other edible mushrooms. Applied Microbiology and Biotechnology, 85, 1321-1337. Doi: 10.1007/s00253-009-2343-7.
[32] Sanei, S.J., Ahmad Khan, M. S. (2019). Optimization of inhibitory effects of Thymus daenensis Celak. and Zataria multifera Boiss. essential oils on Candida albicans using response surface methodology and artificial neural network. Iranian Journal of Pharmaceutical Sciences, 15 (3), 15-28. Doi: 10.22034/ijps.2019.43113.
[33]Soden, D. M., Dobson, A. D. (2001). Differential regulation of laccase gene expression in Pleurotus sajor-caju. Microbiology, 147, 1755-1763. Doi: 10.1099/00221287-147-7-1755.
[34] Stajic, M., Vukojevic, J. (2011). Interaction of trace elements and ligninolytic enzymes in Pleurotus eryngii. Biological Trace Element Research. 143, 1202-1208. Doi: 10.1007/s12011-010-8918-4.
[35] Valle, J. S., Vandenberghe, L. P. S., Oliveira, A. C. C., Tavaresl, M. F., Linde, G. A., Colauto, N. B., Socco, C. R. (2015). Effect of different compounds on the induction of laccase production by Agaricus blazei. Genetics and Molecular Research, 14, 15882- 15891. Doi: 10.4238/2015.December.1.40.
[36] Yadav, B. (2018). Induction of laccase in fungus, Cyathus stercoreus using some aromatic inducers. Journal of Applied and Natural Science, 10 (1), 445-447. Doi: 10.31018/jans.v10i1.1648.
[37] Yang, J., Wang, G., Ng, T. B., Lin, J., Ye, X. (2016). Laccase production and differential transcription of laccase genes in Cerrena sp. in response to metal ions, aromatic compounds, and nutrients. Frontiers in Microbiology, 6, 1558. Doi: 10.3389/fmicb.2015.01558.
[38] Zeeb, B., Fischer, L., Weiss, J. (2014). Stabilization of food dispersions by enzymes. Food and Function. 5, 198-213. Doi: 10.1039/c3fo60499c.
[39] Zhu, C., Bao, G., Huang, S. (2016). Optimization of laccase production in the white-rot fungus Pleurotus ostreatus (ACCC 52857) induced through yeast extract and copper. Biotechnology and Biotechnological Equipment, 30 (2), 270-276. Doi: 10.1080/13102818.2015.1135081.4