[1] Azizi, M., Zare, D., Akhavan Sepahi, A., Azin, M. (2020). Evaluation of the effect of oxidative stress on the increase of beta-carotene production by Blakeslea trispora in the presence of Serratia marcescens. 27th National Iranian Food Science and Technology Congress, 27, 1-8.
[2] Bogacz-Radomska, K., & Harasym, J. (2018). β-Carotene properties and production methods. Food Quality and Safety, 2(2), 69–74. doi: 10.1093/fqsafe/fyy004.
[3] Correa-Filho, L.C., Lourenço, M.M., Moldao-Martins, M., Alves, D.V. (2019). Microencapsulation of 𝛽-Carotene by spray drying: effect of wall material concentration and drying inlet temperature. International Journal of Food Science, 2019, 1-19. doi:10.1155/2019/8914852.
[4] Berman, J., Zorrilla-Lopez, U., Farre, G., Zhu, Ch., Sandmann, G., Twyman, R.M., Capell, T., Christou, P. (2014). Nutritionally important carotenoids as consumer products. The Phytochemical Society of Europe, 13(2): 1-19. doi: 10.1007/s11101-014-9373-1.
[5] Choudhari, S.M., Ananthanarayan, L., Singhal, R.S. (2008). Use of metabolic stimulators and inhibitors for enhanced production of 𝛽 -carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896. Bioresource Technology, 99(2008), 3166–3173. doi: 10.1016/j.biortech.2007.05.051.
[6] Ciegler, A., Pazola, Z., & Hall, H.H., (1964). Stimulation of carotenogenesis by microbial cells. Applied Microbiology, 12, 150-154.
[7] Clarke, P.H., & Cowan, S.T., (1952). Biochemical methods for bacteriology. Microbiology, 6(1-2),187-197. doi: 10.1099/00221287-6-1-2-187.
[8] Duponnois, R., & Garbaye, J. (1989). Some mechanisms involved in growth stimulation of ectomycorrhizal fungi by bacteria. Canadian Journal of Botany, 68(10), 2148-2152. doi: 10.1139/b90-280.
[9] Eman, M.M. (2019). Fungal and yeast carotenoids. Journal of Yeast and Fungal Research, 10(2), 30-44. doi: 10.58971/JYFR2019.0192.
[10] Frey-Klett, P., Burlinson, P., Deveau, A., Barret, M., Tarkka, M., Sarniguet. A. (2011). Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiology and Molecular Biology, 75(4), 583–609. doi:10.1128/MMBR.00020-11.
[11] Gessler, N.N., Sokolov, A.v., Belozerskaya, T.A. (2002). Initial stages of trisporic acid synthesis in Blakeslea trispora. Applied Biochemistry and Microbiology, 38(6), 536-543.
[12] and gene transcription in Blakeslea trispora with arachidonic acid. Biotechnol Lett, 34, 2107–2111. doi:10.1007/s10529-012-1015-3.
[13] Jing, K., He, Sh., Chen, T., Lu, Y., Ng, I. (2016). Enhancing beta-carotene biosynthesis and gene transcriptional regulation in Blakeslea trispora with sodium acetate. Biochemical Engineering Journal, 114, 10–17. doi : 10.1016/j.bej.2016.06.015.
[14] Lampila, L.E., Wallen, S. E., Bullerman, L.B. (1985). A review of factors affecting biosynthesis of carotenoids by the order Mucorales. Mycopathologia, 90, 65- 80.
[15] Liu, SH., Zhang, G. Li, X. Wu, P. Zhang, J. (2015). Enhancement of Rhodobacter sphaeroides growth and carotenoid production through bio stimulation. Journal of Environmental Sciences, 33(2015), 21 – 28. doi: 10.1016/j.jes.2015.01.005.
[16]Luo, W., Gong, Z., Li, Na., Zhao, Y., Zhang, Hu., Yang, X., Liu, Y., Rao, Z., Yu, X. (2020). A negative regulator of carotenogenesis in Blakeslea trispora. Applied Environmental and Microbiology, doi:10.1128/AEM.02462-19.
[17] Market Data Forecast Global Beta Carotene Market - Segmented By Application (Pharmaceuticals, Dietary Supplements, Food & Beverage, Animal Feed, Others), By Source (Syntheric, Algae, Fungi, Palm Oil, Others), & By Regional Analysis (North America, Europe, Asia Pacific, Latin America, and Middle East & Africa) - Global Industry Analysis, Size, Share, Growth, Trends, and Forecast (2021 – 2026)); Hyderabad. (2020). Available online: https://www.marketdataforecast.com/market-reports/beta-carotenemarket (Pulished on April, 2021).
[18] Nanou, K., & Roukas, T. (2011). Stimulation of the biosynthesis of carotenes by oxidative stress in Blakeslea trispora induced by elevated dissolved oxygen levels in the culture medium. Bioresource Technology, 102, 8159-8164. doi: 10.1016/j.biortech.2011.06.027.
[19] Nanou, K., & Roukas, T. (2016). Waste cooking oil: A new substrate for carotene production by Blakeslea trispora in submerged fermentation. Bioresource Technology, 203, 198–203. doi: 10.1016/j.biortech.2015.12.053.
[20] Nanou, K., Roukas, T., Papadakis, E., Kotzekidou, P., (2017). Carotene production from waste cooking oil by Blakeslea trispora in a bubble column reactor: the role of oxidative stress. Engineering in Life Sciences, 17(7), 775–780. doi: 10.1002/elsc.201600228. [21] Papadaki, E., & Mantzouridou, F.T. (2021). Natural β - carotene production by Blakeslea trispora cultivated in Spanish - style green olive processing wastewaters. Foods, 10(2), 327. doi; 10.3390/foods10020327
[22] Papaioannou .E.H., & Liakopoulou-Kyriakides, M. (2010). Substrate contribution on carotenoids production in Blakeslea trispora cultivations. Food and Bioproducts Processing, 88, 305–311. doi:10.1016/j.fbp.2009.03.001.
[23] Papaioannou, E.H., & Liakopoulou-Kyriakides, M. (2012). Agro-food wastes utilization by Blakeslea trispora for carotenoids production. Acta Biochimica Polonica 59(1), 151–153.
[24] Ramos, G.L.P.A., Vigoder, H.C., & Nascimento, J.S. (2021). Kocuria spp. in foods: biotechnological uses and risks for food safety. Applied Food Biotechnology, 8 (2), 79-88. doi: 10.22037/afb. v8i2.30748.
[25] Roukas, T. 2015. The role of oxidative stress on carotene production by Blakeslea trispora in submerged fermentation. Critical Reviews in Biotechnology. 36(3): 424-33.doi: 10.3109/07388551.2014.989424.
[26] Ribeiro, B.D., Barreto, D.W., & Coelho, M.A.Z. (2011). Technological aspects of 𝛽-carotene production. Food and Bioprocess Technology, 4(5), 693–701. doi: 10.1007/s11974-011-0545-3.
[27] Sun, J., Li, H. Yuan, Q. (2012). Metabolic regulation of trisporic acid on Blakeslea trispora revealed by a GC-MS-based metabolomic approach. PLOS ONE, 7(9), e46110. doi: 10.1371/journal.pone.0046110.
[28] Shariati, S., Zare, D., Mirdamadi, S. (2018). Screening of carbon and nitrogen sources using mixture analysis designs for carotenoid production by Blakeslea trispora. Food Science and Biotechnology, 28(2), 469-479. doi: 10.1007/s10068-018-0484-0.
[29] Shlomai, P., Ben-Amotz, A., Margalith, P. (1991). Production of carotene stereoisomers by Phycomyces blakesleeanus. Applied Microbiology and Biotechnology, 34(1991),458-462. doi: 10.1007/BF00180570.
[30]Shi, Q., Wang, X., Ju, Z., Liu, B., Lei, C., Wang, H., Li, H. (2021). Technological and safety characterization of Kocuria rhizophila isolates from traditional ethnic dry-cured ham of Nuodeng, Southwest China. Frontiers in Microbiology, 12,761019. doi: 10.3389/fmicb.2021.761019.
[31] Thakur. M., & Azmi. W. (2013). Nutraceutical 𝛽-Carotene from natural non-conventional sources and its applications. Annals of Phytomedicine, 2(1), 59-73.
[32] Takarada, H., Sekine, M., Kosugi. H., Matsuo, Y., Fujisawa, T. (2008). Complete genome sequence of the soil actinomycete Kocuria rhizophila. Journal of Bacteriology, 190(12), 4139–4146. doi:10.1128/JB.01853-07.
[33] Timkina, E., Drabova, L., Palyzova, A., Rezanka, T., Matatkova, O., Kolouchova, I. (2022). Kocuria strains from unique radon spring water from Jachymov Spa. Fermentation, 8(35),1-14. doi: 10.3390/fermentation 8010035.
[34] Wang, Y., Wang, Y., Chen, X., Gao, N., Wu, Y., Zhang, H. (2021). Protoplast fusion between in Blakeslea trispora 14,271(+) and 14,271(-) enhanced the yield of lycopene and ꞵ-carotene. World Journal of Microbiology and Biotechnology, 37(4),58. doi: 10.1007/s11274-021-03023-4.
[35] Wang, J., Hu, X., Chen, J., Wang, T., Huang, X., Chen, G. )2022). The extraction of 𝛽 -carotene from microalgae for testing their health benefits. Foods, 11(4), 502. dio: 10.3390/foods11040502
[36] Zare, D., Azin, M., Shahrabi, F. (2002). Optimization of 𝛽 -carotene production using Blakeslea trispora fungi. 6th Iranian National Chemical Congress, 1,517-523.
[37] Zare, D., & Azin, M. (2003). Investigating the effect of complete and live cells of some bacteria on increasing the production of 𝛽 -carotene from Blakeslea trispora cultures. Iranian Journal of Biology, 14,1-6.