Polymicrobial Shifts in the Culturable Bacterial Microbiome Associated with Persian Oak Decline in Western Iran

Document Type : Research Paper

Authors

1 Department of Silviculture and Forest Ecology, Gorgan University of Agricultural Science and Natural Resources, Basij Square, P.O. Box: 4918943464, Gorgan, Iran

2 Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran

Abstract


Persian oak decline is a distinct syndrome within the broader oak decline complex observed in Iran, marked by excessive stem bleeding and larval galleries formed by the native buprestid beetle Agrilus hastulifer. To investigate this phenomenon, a comparative study was conducted on healthy and symptomatic trees across eight sites in Ilam province, western Iran. Culturable bacterial communities were identified using 16S rDNA sequencing. Symptomatic tissues from trees at Disease Index 5 yielded bacterial growth in 83.78% of samples—significantly higher than those from less affected trees. Bulk soil and rhizosphere samples also yielded greater bacterial yields than root, leaf, or stem tissues. Although bacterial community composition varied by site, diseased tissues consistently showed dominance of Enterobacteriaceae, while Bacillaceae and Moraxellaceae were more prevalent in healthy trees. Specific bacterial species, Brenneria goodwinii, Serratia marcescens, and Dickeya chrysanthemi, were strongly associated with diseased tissues, suggesting that necrosis was not due to random colonization. Campylobacter jejuni and an unidentified Clostridium taxon were frequently isolated from both healthy and diseased trees. These findings indicate a clear shift in the microbiome of diseased trees, with Enterobacteriaceae absent in healthy tissues. Crucially, no single dominant pathogen was identified, supporting the hypothesis that Persian oak decline is driven by a polymicrobial infection.

Keywords

Main Subjects


Abdel-Rahman, H. M., Salem, A. A., Moustafa, M. M., & El-Garhy, H. A. (2017). A novice Achromobacter sp. EMCC1936 strain acts as a plant-growth-promoting agent. Acta physiologiae plantarum, 39, 1-15. https://doi.org/10.0.3.239/s11738-017-2360-6.
Ahmadi, E., Kowsari, M., Azadfar, D., & Salehi Jouzani, G. (2019). Bacillus pumilus and Stenotrophomonas maltophilia as two potentially causative agents involved in Per-sian oak decline in Zagros forests (Iran). Forest Pathology, 49(5), e12541. https://doi.org/10.1111/efp.12541.
Ahmadi, R., Kiadaliri, H., Mataji, A., & Kafaki, S. (2014). Oak forest decline zonation using AHP model and GIS technique in Zagros forests of Ilam province. J Biodivers Environ Sci, 4(3), 141-50.
Alidadi, A., Javan-Nikkhah, M., Kowsari, M., Karami, S., & Rastaghi, M. E. (2018). Some species of fungi associated with declined Persian oak trees in Ilam province with emphasis on new records to mycobiota of Iran.
Amaral-Zettler, L. A., Zettler, E. R., Theroux, S. M., Palacios, C., Aguilera, A., & Am-ils, R. (2011). Microbial community structure across the tree of life in the extreme Rio Tinto. The ISME journal, 5(1), 42-50. https://doi.org/10.1038/ismej.2010.101.
Andreote, F. D., Gumiere, T., & Durrer, A. (2014). Exploring interactions of plant mi-crobiomes. Scientia agrícola, 71, 528-539. https://doi.org/10.1590/0103-9016-2014-0195.
Azimi, P., Safaie, N., Zamani, S. M., Mojerlou, S., & Alizadeh, M. (2023). Climate-induced vegetation dynamics associated with the prevalence of charcoal oak disease in Zagros forests. Industrial Crops and Products, 200, 116885.
BakhshiGanje, M., Mahmoodi, S., Ahmadi, K., & Mirabolfathy, M. (2024). Potential distribution of Biscogniauxia mediterranea and Obolarina persica causal agents of oak charcoal disease in Iran’s Zagros forests. Scientific Reports, 14(1), 7784. https://doi.org/10.1038/s41598-024-57298-2.
Bashiri, S., & Abdollahzadeh, J. (2024). Taxonomy and pathogenicity of fungi associated with oak decline in northern and central Zagros forests of Iran with emphasis on coelomycetous species. Frontiers in Plant Science, 15, 1377441. https://doi.org/10.3389/fpls.2024.1377441.
Bayranvand, M., Akbarinia, M., Salehi Jouzani, G., Gharechahi, J., Kooch, Y., & Baldrian, P. (2021). Composition of soil bacterial and fungal communities in relation to vegetation composition and soil characteristics along an altitudinal gradient. FEMS microbiology ecology97(1), fiaa201.
Berg, J. J., Harpak, A., Sinnott-Armstrong, N., Joergensen, A. M., Mostafavi, H., Field, Y., ... & Coop, G. (2019). Reduced signal for polygenic adaptation of height in UK Bi-obank. Elife, 8, e39725. https://doi.org/10.7554/eLife.39725.
Bergey, D. H., & Breed, R. S. (1948). Manual of determinative bacteriology. Williams & Wilkins Company.
Biosca, E. G., González, R., López-López, M. J., Soria, S., Montón, C., Pérez-Laorga, E., & López, M. M. (2003). Isolation and characterization of Brenneria quercina, causal agent for bark canker and drippy nut of Quercus spp. in Spain. Phytopathology, 93(4), 485-492. https://doi.org/10.1094/PHYTO.2003.93.4.485.
Brady, C. L., Cleenwerck, I., Denman, S., Venter, S. N., Rodríguez-Palenzuela, P., Coutinho, T. A., & De Vos, P. (2012). Proposal to reclassify Brenneria quercina (Hil-debrand and Schroth 1967) Hauben et al. 1999 into a new genus, Lonsdalea gen. nov., as Lonsdalea quercina comb. nov., descriptions of Lonsdalea quercina subsp. quercina comb. nov., Lonsdalea quercina subsp. iberica subsp. nov. and Lonsdalea quercina subsp. britannica subsp. nov., emendation of the description of the genus Brenneria, re-classification of Dickeya dieffenbachiae as Dickeya dadantii subsp. dieffenbachiae comb. nov., and emendation of the .... International Journal of Systematic and Evolu-tionary Microbiology, 62(Pt_7), 1592-1602. https://doi.org/10.1099/ijs.0.035055-0.
Brady, C., Hunter, G., Kirk, S., Arnold, D., & Denman, S. (2014). Description of Bren-neria roseae sp. nov. and two subspecies, Brenneria roseae subspecies roseae ssp. nov and Brenneria roseae subspecies americana ssp. nov. isolated from symptomatic oak. Systematic and Applied Microbiology, 37(6), 396-401. https://doi.org/10.1016/j.syapm.2014.04.005.
Brady, C., Hunter, G., Kirk, S., Arnold, D., & Denman, S. (2014). Rahnella victoriana sp. nov., Rahnella bruchi sp. nov., Rahnella woolbedingensis sp. nov., classification of Rahnella genomospecies 2 and 3 as Rahnella variigena sp. nov. and Rahnella inusitata sp. nov., respectively and emended description of the genus Rahnella. Systematic and applied microbiology, 37(8), 545-552. https://doi.org/10.1016/j.syapm.2014.09.001.
Brandl, M. T., Haxo, A. F., Bates, A. H., & Mandrell, R. E. (2004). Comparison of sur-vival of Campylobacter jejuni in the phyllosphere with that in the rhizosphere of spin-ach and radish plants. Applied and Environmental Microbiology, 70(2), 1182-1189. https://doi.org/10.1128/AEM.70.2.1182-1189.2004.
Compant, S., Van Der Heijden, M. G., & Sessitsch, A. (2010). Climate change effects on beneficial plant–microorganism interactions. FEMS microbiology ecology, 73(2), 197-214. https://doi.org/10.1111/j.1574-6941.2010.00900.x.
Constantin, M., Negut, C. D., Barna, C., Cîmpeanu, C., & Ardelean, I. I. (2016). Isola-tion and identification of soil bacteria able to efficiently remove copper from culture mediums. Rom J Phys, 61, 707-717.
De Baets, F., Schelstraete, P., Van Daele, S., Haerynck, F., & Vaneechoutte, M. (2007). Achromobacter xylosoxidans in cystic fibrosis: prevalence and clinical rele-vance. Journal of Cystic Fibrosis, 6(1), 75-78. https://doi.org/10.1016/j.jcf.2006.05.011.
Denman, S., & Webber, J. (2009). Oak declines: new definitions and new episodes in Britain.
Denman, S., Brown, N., Kirk, S., Jeger, M., & Webber, J. (2014). A description of the symptoms of Acute Oak Decline in Britain and a comparative review on causes of similar disorders on oak in Europe. Forestry: An International Journal of Forest Re-search, 87(4), 535-551. https://doi.org/10.1093/forestry/cpu010.
Denman, S., Doonan, J., Ransom-Jones, E., Broberg, M., Plummer, S., Kirk, S., ... & McDonald, J. E. (2018). Microbiome and infectivity studies reveal complex polyspe-cies tree disease in Acute Oak Decline. The ISME journal, 12(2), 386-399. https://doi.org/10.1038/ismej.2017.170.
Denman, S., Plummer, S., Kirk, S., Peace, A., & McDonald, J. E. (2016). Isolation stud-ies reveal a shift in the cultivable microbiome of oak affected with Acute Oak De-cline. Systematic and Applied Microbiology, 39(7), 484-490. https://doi.org/10.1016/j.syapm.2016.07.002.
Doonan, J., Denman, S., Pachebat, J. A., & McDonald, J. E. (2019). Genomic analysis of bacteria in the Acute Oak Decline pathobiome. Microbial genomics5(1), e000240.
Drenovsky, R. E., Vo, D., Graham, K. J., & Scow, K. M. (2004). Soil water content and organic carbon availability are major determinants of soil microbial community com-position. Microbial ecology, 48, 424-430. https://doi.org/10.1007/s00248-003-1063-2.
Embarcadero-Jiménez, S., Rivera-Orduña, F. N., & Wang, E. T. (2016). Bacterial communities estimated by pyrosequencing in the soils of chinampa, a traditional sus-tainable agro-ecosystem in Mexico. Journal of soils and sediments, 16, 1001-1011. https://doi.org/10.1007/s11368-015-1277-1.
Fierer, N., & Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences, 103(3), 626-631. https://doi.org/10.1073/pnas.0507535103.
Geraffi, N., Gupta, P., Wagner, N., Barash, I., Pupko, T., & Sessa, G. (2023). Comparative sequence analysis of pPATH pathogenicity plasmids in Pantoea agglomerans gall-forming bacteria. Frontiers in Plant Science14, 1198160.
Gosling, R. H., Jackson, R. W., Elliot, M., & Nichols, C. P. (2024). Oak declines: Reviewing the evidence for causes, management implications and research gaps. Ecological Solutions and Evidence, 5(4), e12395.
Hall, R. I., & Smol, J. P. (1992). A weighted—averaging regression and calibration model for inferring total phosphorus concentration from diatoms in British Columbia (Canada) lakes. Freshwater Biology, 27(3), 417-434. https://doi.org/10.1111/j.1365-2427.1992.tb00551.x.
Ho, Y. N., Hsieh, J. L., & Huang, C. C. (2013). Construction of a plant–microbe phy-toremediation system: Combination of vetiver grass with a functional endophytic bac-terium, Achromobacter xylosoxidans F3B, for aromatic pollutants remov-al. Bioresource Technology, 145, 43-47. https://doi.org/10.1016/j.biortech.2013.02.051.
Inácio, M. L., Henriques, J., Guerra-Guimaraes, L., Gil Azinheira, H., Lima, A., & Sou-sa, E. (2011). Platypus cylindrus Fab.(Coleoptera: Platypodidae) transports Biscog-niauxia mediterranea, agent of cork oak charcoal canker. Bol. San. Veg. Plagas, 37, 181-186.
Ishihara, M., Takikawa, Y., Akiba, M., & Kawabe, Y. (2015). A new bacterial disease observed on Q uercus myrsinifolia. Forest Pathology, 45(6), 459-466. https://doi.org/10.1111/efp.12195.
Jakobsen, T. H., Hansen, M. A., Jensen, P. Ø., Hansen, L., Riber, L., Cockburn, A., ... & Bjarnsholt, T. (2013). Complete genome sequence of the cystic fibrosis pathogen Achromobacter xylosoxidans NH44784-1996 complies with important pathogenic phe-notypes. PloS one, 8(7), e68484. https://doi.org/10.1371/journal.pone.0068484.
Jamali, S., & Haack, R. A. (2024). From Glory to Decline: Uncovering Causes of Oak Decline in Iran. Forest Pathology, 54(5), e12898. https://doi.org/10.1111/efp.12898.
Jin, H., Yang, X. Y., Yan, Z. Q., Liu, Q., Li, X. Z., Chen, J. X., ... & Qin, B. (2014). Characterization of rhizosphere and endophytic bacterial communities from leaves, stems and roots of medicinal Stellera chamaejasme L. Systematic and Applied Micro-biology, 37(5), 376-385. https://doi.org/10.1016/j.syapm.2014.05.001.
Li, Y., He, W., Ren, F., Guo, L., Chang, J., Cleenwerck, I., ... & Wang, H. (2014). A canker disease of Populus× euramericana in China caused by Lonsdalea quercina subsp. populi. Plant Disease, 98(3), 368-378. https://doi.org/10.1094/PDIS-01-13-0115-RE
Linaldeddu, B. T., Sirca, C., Spano, D., & Franceschini, A. (2009). Physiological re-sponses of cork oak and holm oak to infection by fungal pathogens involved in oak de-cline. Forest Pathology, 39(4), 232-238.
Lindow, S. E., & Brandl, M. T. (2003). Microbiology of the phyllosphere. Applied and environmental microbiology, 69(4), 1875-1883. https://doi.org/10.1128/AEM.69.4.1875-1883.2003.
Mehri, S., Alesheikh, A. A., & Lotfata, A. (2024). Abiotic factors impact on oak forest decline in Lorestan Province, Western Iran. Scientific reports, 14(1), 3973. https://doi.org/10.1038/s41598-024-54551-6.
Minchin, P. R. (1987). Simulation of multidimensional community patterns: towards a comprehensive model. Vegetatio, 71, 145-156. https://doi.org/10.1007/BF00039167.
Mirhashemi, H., Heydari, M., Karami, O., Ahmadi, K., & Mosavi, A. (2023). Modeling climate change effects on the distribution of oak forests with machine  learning. Forests, 14(3), 469. https://doi.org/10.3390/f14030469.
Moradi‐Amirabad, Y., Rahimian, H., Babaeizad, V., & Denman, S. (2019). Brenneria spp. and Rahnella victoriana associated with acute oak decline symptoms on oak and hornbeam in Iran. Forest Pathology, 49(4), e12535. https://doi.org/10.1111/efp.12535.
Nechita, C., & Camarero, J. J. (2025). Hotter winter-spring droughts accelerated the growth decline of marginal pedunculate oak (Quercus robur) populations in dry sites from Romania. Dendrochronologia, 126369. https://doi.org/10.1016/j.dendro.2025.126369.
Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., ... & Wagner, H. (2016). vegan: community ecology package. R version 3.2. 4. Community ecol. packag. version, 2.
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R. B., ... & Wagner, H. (2013). Community ecology package. R package version, 2(0), 321-326.
Ou, X., Cao, J., Cheng, A., Peppelenbosch, M. P., & Pan, Q. (2019). Errors in transla-tional decoding: tRNA wobbling or misincorporation? PLoS genetics, 15(3), e1008017. https://doi.org/10.1371/journal.pgen.1008017.
Panahi, P., Jamzad, Z., Pourmajidian, M. R., Fallah, A., & Pourhashemi, M. (2012). Fo-liar epidermis morphology in Quercus (subgenus Quercus, section Quercus) in Iran. Acta Botanica Croatica, 71(1), 95-113. https://doi.org/10.2478/v10184-010-0029-y.
Rokhbakhsh-Zamin, F., Sachdev, D., Kazemi-Pour, N., Engineer, A., Pardesi, K. R., Zinjarde, S., ... & Chopade, B. A. (2011). Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. Journal of Microbiology and Biotechnology, 21(6), 556-566. https://doi.org/10.4014/jmb.1012.12006.
Sagheb Talebi, K., Sajedi, T., & Pourhashemi, M. (2014). Forests of Iran: A Treasure from the Past, a Hope for the Future (No. 15325). Springer Netherlands.
Sapp, M., Lewis, E., Moss, S., Barrett, B., Kirk, S., Elphinstone, J. G., & Denman, S. (2016). Metabarcoding of bacteria associated with the acute oak decline syndrome in England. Forests, 7(5), 95. https://doi.org/10.3390/f7050095.
Schaad, N. W., Jones, J. B., & Chun, W. (2001). Laboratory guide for the identifica-tion of plant pathogenic bacteria (No. Ed. 3, pp. xii+-373)
Sturz, A. V., Christie, B. R., Matheson, B. G., & Nowak, J. (1997). Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biology and Fertility of Soils, 25, 13-19. ttps://doi.org/10.1007/s003740050273.
Taghimollaei, Y., & Karamshahi, A. (2017). Sudden oak death in Iran forests. Int. J. For. Soil Eros. (IJFSE), 7, 6-10.
Trivedi, P., Spann, T., & Wang, N. (2011). Isolation and characterization of benefi-cial bacteria associated with citrus roots in Florida. Microbial ecology, 62, 324-336. https://doi.org/10.1007/s00248-011-9822-y.
Wakelin, S. A., Chu, G., Broos, K., Clarke, K. R., Liang, Y., & McLaughlin, M. J. (2010). Structural and functional response of soil microbiota to addition of plant substrate are moderated by soil Cu levels. Biology and Fertility of Soils, 46, 333-342.
Zhang, N., Wang, Z., Shao, J., Xu, Z., Liu, Y., Xun, W., ... & Zhang, R. (2023). Biocontrol mechanisms of Bacillus: Improving the efficiency of green agriculture. Microbial Biotechnology16(12), 2250-2263.
Zhou, J., Bruns, M. A., & Tiedje, J. M. (1996). DNA recovery from soils of diverse composition. Applied and environmental microbiology, 62(2), 316-322. https://doi.org/10.1128/aem.62.2.316-322.1996.
Zolfaghari, R., Fayyaz, P., Dalvand, F., & Rezaei, R. (2024). The first report of Quercus brantii dieback caused by Lelliottia nimipressuralis in Zagros forests, Iran. Folia Forestalia Polonica. Series A. Forestry, 66(4). https://doi.org/10.2478/ffp-2024-0030.