Al-Amin, A., Parvin, F., Chakraborty, J., & Kim, Y.-I. (2021). Cyanobacteria mediated heavy metal removal: a review on mechanism, biosynthesis, and removal capability.
Environmental Technology Reviews,
10(1), 44-57.
https://doi.org/10.1080/21622515.2020.1869323
Cepoi, L., Zinicovscaia, I., Rudi, L., Chiriac, T., Miscu, V., Djur, S., Strelkova, L., Vergel, K., & Nekhoroshkov, P. (2020). Growth and heavy metals accumulation by Spirulina platensis biomass from multicomponent copper containing synthetic effluents during repeated cultivation cycles.
Ecological Engineering,
142, 105637.
https://doi.org/10.1016/j.ecoleng.2019.105637
Chaiyasitdhi, A., Miphonpanyatawichok, W., Riehle, M. O., Phatthanakun, R., Surareungchai, W., Kundhikanjana, W., & Kuntanawat, P. (2018). The biomechanical role of overall-shape transformation in a primitive multicellular organism: A case study of dimorphism in the filamentous cyanobacterium Arthrospira platensis.
PLoS ONE,
13(5), e0196383.
https://doi.org/10.1371/journal.pone.0196383
de Morais, M. G., Reichert, C. d. C., Dalcanton, F., Durante, A. J., Marins, L. F., & Vieira Costa, J. A. (2008). Isolation and characterization of a new Arthrospira strain.
Zeitschrift für Naturforschung C,
63(1-2), 144-150.
https://doi.org/10.1515/znc-2008-1-226
El Baky, H. H. A., El Baroty, G. S., & Mostafa, E. M. (2020). Optimization growth of Spirulina (Arthrospira) platensis in photobioreactor under varied nitrogen concentration for maximized biomass, carotenoids and lipid contents.
Recent Patents on Food, Nutrition & Agriculture,
11(1), 40-48.
https://doi.org/10.2174/2212798410666181227125229
Gómez, C., Guzmán‐Carrasco, A., Lafarga, T., & Acién‐Fernández, F. G. (2021). Optimization of a new culture medium for the large‐scale production of protein‐rich arthrospira platensis (oscillatoriales, cyanophyceae).
Journal of Phycology,
57(2), 636-644.
https://doi.org/10.1111/jpy.13111
Gorbunov, M. Y., Kuzminov, F. I., Fadeev, V. V., Kim, J. D., & Falkowski, P. G. (2011). A kinetic model of non-photochemical quenching in cyanobacteria.
Biochimica et Biophysica Acta (BBA)-Bioenergetics,
1807(12), 1591-1599.
https://doi.org/10.1016/j.bbabio.2011.08.009
Guenachi, B., Mefti, H. K., Benfares, R., Abderrahmani, K., Boudjema, K., Achour, H. Y., Toumatia, O., Bidin, A., & Lamari, L. (2025). Morphological and molecular identification of a new halotolerant cyanobacterial strain, Limnospira fusiformis TL03, isolated from Telamine Lake in the northwest of Algeria.
Acta Botanica Brasilica,
39, e20230137.
https://doi.org/10.1590/1677-941X-ABB-2023-0137
Ismaiel, M. M. S., El-Ayouty, Y. M., & Piercey-Normore, M. (2016). Role of pH on antioxidants production by Spirulina (Arthrospira) platensis.
Brazilian Journal of Microbiology,
47, 298-304.
https://doi.org/10.1016/j.bjm.2016.01.003
Jeeji-Bai, N. (1985). Competitive exclusion or morphological transformation? A case study with Spirulina forsifomis.
Archiv für Hydrobiologie,
71(suppl), 191-199.
https://doi.org/10.1007/0-306-46855-7_18
Markou, G., Kougia, E., Arapoglou, D., Chentir, I., Andreou, V., & Tzovenis, I. (2023). Production of Arthrospira platensis: Effects on growth and biochemical composition of long-term acclimatization at different salinities.
Bioengineering,
10(2), 233.
https://doi.org/10.3390/bioengineering10020233
Molnár, S., Kiss, A., Virág, D., & Forgó, P. (2013). Comparative studies on accumulation of selected microelements by Spirulina platensis and Chlorella vulgaris with the prospects of functional food development.
Journal of Chemical Engineering & Process Technology,
4(7).
https://doi.org/10.4172/2157-7048.1000172
Mühling, M., Somerfield, P. J., Harris, N., Belay, A., & Whitton, B. A. (2006). Phenotypic analysis of Arthrospira (Spirulina) strains (cyanobacteria).
Phycologia,
45(2), 148-157.
https://doi.org/10.2216/05-21.1
Ogato, T., & Kifle, D. (2014). Morphological variability of Arthrospira (Spirulina) fusiformis in relation to environmental variables in the tropical soda lake Chitu, Ethiopia.
Hydrobiologia,
738, 21-33.
https://doi.org/10.1007/s10750-014-1912-7
Rai, R., Agrawal, M., & Agrawal, S. (2016). Impact of heavy metals on physiological processes of plants: with special reference to photosynthetic system. In
Plant responses to xenobiotics (pp. 127-140).
https://doi.org/10.1007/978-981-10-2860-1_6
Roy, A., Kumar, S., Kumari, A., Kumar, A., Gaykwad, G., Singh, S., Sahu, A., Ansari, S., Alam, F., & Ansari, M. K. (2025). Unveiling the Green Gold: A Comprehensive Review of Arthrospira Platensis's Botanical, Pharmacological and Biotechnological Aspects with Emphasis on Anti-Oxidant Activity.
International Journal of Scientific Research and Technology.
https://doi.org/10.5281/zenodo.15421425
Samimiazad, A., Mirdamadi, S., Sepahi, A. A., Sedaghati, M., & Safavi, M. (2025). Characterization of Zinc-Chelating Peptides Prepared from Arthrospira platensis Proteins.
Food Bioscience, 106096.
https://doi.org/10.1016/j.fbio.2025.106096
Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales).
Bacteriological Reviews,
35(2), 171-205.
https://doi.org/10.1128/br.35.2.171-205.1971
Wang, F.-S., Dong, S.-R., Zhang, H.-Y., & Wang, S.-Y. (2018). Putative model based on iTRAQ proteomics for Spirulina morphogenesis mechanisms.
Journal of Proteomics,
171, 73-80.
https://doi.org/10.1016/j.jprot.2017.03.017
Wang, X., Li, Y., Zhang, X., Chen, X., Wang, X., Yu, D., & Ge, B. (2024). The extracellular polymeric substances (EPS) accumulation of Spirulina platensis responding to Cadmium (Cd2+) exposure.
Journal of Hazardous Materials,
470, 134244.
https://doi.org/10.1016/j.jhazmat.2024.134244
Wu, H., Abasova, L., Cheregi, O., Deák, Z., Gao, K., & Vass, I. (2011). D1 protein turnover is involved in protection of Photosystem II against UV-B induced damage in the cyanobacterium Arthrospira (Spirulina) platensis.
Journal of Photochemistry and Photobiology B: Biology,
104(1-2), 320-325.
https://doi.org/10.1016/j.jphotobiol.2011.01.004
Yadav, P., Singh, R. P., Rana, S., Joshi, D., Kumar, D., Bhardwaj, N., Gupta, R. K., & Kumar, A. (2022). Mechanisms of stress tolerance in cyanobacteria under extreme conditions.
Stresses,
2(4), 531-549.
https://doi.org/10.3390/stresses2040036
Zanolla, V., Biondi, N., Niccolai, A., Abiusi, F., Adessi, A., Rodolfi, L., & Tredici, M. R. (2022). Protein, phycocyanin, and polysaccharide production by Arthrospira platensis grown with LED light in annular photobioreactors.
Journal of Applied Phycology,
34(3), 1189-1199.
https://doi.org/10.1007/s10811-022-02707-0
Zapata, D., Arroyave, C., Cardona, L., Aristizábal, A., Poschenrieder, C., & Llugany, M. (2021). Phytohormone production and morphology of Spirulina platensis grown in dairy wastewaters.
Algal Research,
59, 102469.
https://doi.org/10.1016/j.algal.2021.102469