Impact of Arthrospira platensis Morphology on Growth Performance and Zinc Bioaccumulation

Document Type : Research Paper

Authors

1 Department of Food Science and Technology, NT.C., Islamic Azad University, Tehran, Iran

2 Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran

3 Department of Microbiology, NT.C., Islamic Azad University, North Tehran Branch, Tehran, Iran

Abstract

The cyanobacterium Arthrospira platensis has garnered significant attention for its biotechnological applications; however, morphological and physiological variations among different species can considerably influence their industrial viability. This research provides a detailed comparative analysis of two variants of A. platensis (designated as L and S), which exhibit differing trichome morphologies—linear and spiral, respectively. The study investigates their molecular identity, growth characteristics, and resilience to zinc-induced stress. Notably, strain S, characterized by spiral trichomes, exhibited enhanced biomass production (OD590 = 2.6 ± 0.04). In contrast, strain L, with linear trichomes, demonstrated reduced growth (OD590 = 1.8 ± 0.03) and impaired metabolic efficiency at high zinc concentrations, suggesting reduced stress adaptability (p < 0.05). Molecular identification through 16S rRNA sequencing confirmed both strains as A. platensis, showing 99% similarity to type strains in the NCBI database. Both morphologies exhibited concentration-dependent zinc enrichment, with enrichment factor (EF) values reaching 17.03 for strain S and 16.73 for strain L at a zinc concentration of 11 mg L⁻¹. The superior zinc accumulation capacity of the spiral morphotype is likely attributable to a combination of structural and physiological factors. These results underscore the significant influence of trichome morphology on stress tolerance, positioning morphology S as a promising candidate for bioaccumulation and large-scale cultivation. This study offers valuable insights into strain selection for industrial applications.

Keywords

Main Subjects


Al-Amin, A., Parvin, F., Chakraborty, J., & Kim, Y.-I. (2021). Cyanobacteria mediated heavy metal removal: a review on mechanism, biosynthesis, and removal capability. Environmental Technology Reviews, 10(1), 44-57.  https://doi.org/10.1080/21622515.2020.1869323
Bendezu Najarro, R. D. (2024). Estudio de las variables de proceso para el mejoramiento morfológico de espirulina (Arthrospira platensis) en la empresa Musuq Kawsay. http://repositorio.unsch.edu.pe/handle/UNSCH/6490
Cepoi, L., Zinicovscaia, I., Rudi, L., Chiriac, T., Miscu, V., Djur, S., Strelkova, L., Vergel, K., & Nekhoroshkov, P. (2020). Growth and heavy metals accumulation by Spirulina platensis biomass from multicomponent copper containing synthetic effluents during repeated cultivation cycles. Ecological Engineering, 142, 105637.  https://doi.org/10.1016/j.ecoleng.2019.105637
Chaiyasitdhi, A., Miphonpanyatawichok, W., Riehle, M. O., Phatthanakun, R., Surareungchai, W., Kundhikanjana, W., & Kuntanawat, P. (2018). The biomechanical role of overall-shape transformation in a primitive multicellular organism: A case study of dimorphism in the filamentous cyanobacterium Arthrospira platensis. PLoS ONE, 13(5), e0196383. https://doi.org/10.1371/journal.pone.0196383
de Morais, M. G., Reichert, C. d. C., Dalcanton, F., Durante, A. J., Marins, L. F., & Vieira Costa, J. A. (2008). Isolation and characterization of a new Arthrospira strain. Zeitschrift für Naturforschung C, 63(1-2), 144-150.  https://doi.org/10.1515/znc-2008-1-226
El Baky, H. H. A., El Baroty, G. S., & Mostafa, E. M. (2020). Optimization growth of Spirulina (Arthrospira) platensis in photobioreactor under varied nitrogen concentration for maximized biomass, carotenoids and lipid contents. Recent Patents on Food, Nutrition & Agriculture, 11(1), 40-48.  https://doi.org/10.2174/2212798410666181227125229
Gadd, G. M. (2010). Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology, 156(3), 609-643.  https://doi.org/10.1099/mic.0.037143-0
Gómez, C., Guzmán‐Carrasco, A., Lafarga, T., & Acién‐Fernández, F. G. (2021). Optimization of a new culture medium for the large‐scale production of protein‐rich arthrospira platensis (oscillatoriales, cyanophyceae). Journal of Phycology, 57(2), 636-644. https://doi.org/10.1111/jpy.13111
Gorbunov, M. Y., Kuzminov, F. I., Fadeev, V. V., Kim, J. D., & Falkowski, P. G. (2011). A kinetic model of non-photochemical quenching in cyanobacteria. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1807(12), 1591-1599.  https://doi.org/10.1016/j.bbabio.2011.08.009
Guenachi, B., Mefti, H. K., Benfares, R., Abderrahmani, K., Boudjema, K., Achour, H. Y., Toumatia, O., Bidin, A., & Lamari, L. (2025). Morphological and molecular identification of a new halotolerant cyanobacterial strain, Limnospira fusiformis TL03, isolated from Telamine Lake in the northwest of Algeria. Acta Botanica Brasilica, 39, e20230137.  https://doi.org/10.1590/1677-941X-ABB-2023-0137
Hagemann, M. (2011). Molecular biology of cyanobacterial salt acclimation. FEMS Microbiology Reviews, 35(1), 87-123.  https://doi.org/10.1111/j.1574-6976.2010.00234.x
Ismaiel, M. M. S., El-Ayouty, Y. M., & Piercey-Normore, M. (2016). Role of pH on antioxidants production by Spirulina (Arthrospira) platensis. Brazilian Journal of Microbiology, 47, 298-304.  https://doi.org/10.1016/j.bjm.2016.01.003
Jeeji-Bai, N. (1985). Competitive exclusion or morphological transformation? A case study with Spirulina forsifomis. Archiv für Hydrobiologie, 71(suppl), 191-199.  https://doi.org/10.1007/0-306-46855-7_18
Kim, G.-H., Lee, Y. J., & Kwon, J.-H. (2025). Relationship Between Harvesting Efficiency and Filament Morphology in Arthrospira platensis. https://doi.org/10.3390/microorganisms13020367
Markou, G., Kougia, E., Arapoglou, D., Chentir, I., Andreou, V., & Tzovenis, I. (2023). Production of Arthrospira platensis: Effects on growth and biochemical composition of long-term acclimatization at different salinities. Bioengineering, 10(2), 233. https://doi.org/10.3390/bioengineering10020233
Molnár, S., Kiss, A., Virág, D., & Forgó, P. (2013). Comparative studies on accumulation of selected microelements by Spirulina platensis and Chlorella vulgaris with the prospects of functional food development. Journal of Chemical Engineering & Process Technology, 4(7). https://doi.org/10.4172/2157-7048.1000172
Monod, J. (2012). The growth of bacterial cultures. Selected Papers in Molecular Biology by Jacques Monod, 139, 606.  https://doi.org/10.1146/annurev.mi.03.100149.002103
Mühling, M., Somerfield, P. J., Harris, N., Belay, A., & Whitton, B. A. (2006). Phenotypic analysis of Arthrospira (Spirulina) strains (cyanobacteria). Phycologia, 45(2), 148-157.  https://doi.org/10.2216/05-21.1
Ogato, T., & Kifle, D. (2014). Morphological variability of Arthrospira (Spirulina) fusiformis in relation to environmental variables in the tropical soda lake Chitu, Ethiopia. Hydrobiologia, 738, 21-33.  https://doi.org/10.1007/s10750-014-1912-7
Rai, R., Agrawal, M., & Agrawal, S. (2016). Impact of heavy metals on physiological processes of plants: with special reference to photosynthetic system. In Plant responses to xenobiotics (pp. 127-140).  https://doi.org/10.1007/978-981-10-2860-1_6
Rosic, N. (2022). Molecular mechanisms of stress tolerance in cyanobacteria. In Ecophysiology and biochemistry of cyanobacteria (pp. 131-153). Springer. https://doi.org/10.1007/978-981-16-4873-1_7
Roy, A., Kumar, S., Kumari, A., Kumar, A., Gaykwad, G., Singh, S., Sahu, A., Ansari, S., Alam, F., & Ansari, M. K. (2025). Unveiling the Green Gold: A Comprehensive Review of Arthrospira Platensis's Botanical, Pharmacological and Biotechnological Aspects with Emphasis on Anti-Oxidant Activity. International Journal of Scientific Research and Technology. https://doi.org/10.5281/zenodo.15421425
Samimiazad, A., Mirdamadi, S., Sepahi, A. A., Sedaghati, M., & Safavi, M. (2025). Characterization of Zinc-Chelating Peptides Prepared from Arthrospira platensis Proteins. Food Bioscience, 106096.  https://doi.org/10.1016/j.fbio.2025.106096
Sili, C., Torzillo, G., & Vonshak, A. (2012). Arthrospira (spirulina). In Ecology of cyanobacteria II: their diversity in space and time (pp. 677-705). Springer. https://doi.org/10.1007/978-94-007-3855-3
Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, G. (1971). Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological Reviews, 35(2), 171-205.  https://doi.org/10.1128/br.35.2.171-205.1971
Tiwari, S., Parihar, P., Patel, A., Singh, R., & Prasad, S. M. (2019). Metals in cyanobacteria: Physiological and molecular regulation. In Cyanobacteria (pp. 261-276). Elsevier. https://doi.org/10.1016/B978-0-12-814667-5.00013-1
Walsby, A. (1994). Gas vesicles. Microbiological Reviews, 58(1), 94-144. https://doi.org/10.1128/mr.58.1.94-144.1994
Wang, F.-S., Dong, S.-R., Zhang, H.-Y., & Wang, S.-Y. (2018). Putative model based on iTRAQ proteomics for Spirulina morphogenesis mechanisms. Journal of Proteomics, 171, 73-80. https://doi.org/10.1016/j.jprot.2017.03.017
Wang, X., Li, Y., Zhang, X., Chen, X., Wang, X., Yu, D., & Ge, B. (2024). The extracellular polymeric substances (EPS) accumulation of Spirulina platensis responding to Cadmium (Cd2+) exposure. Journal of Hazardous Materials, 470, 134244. https://doi.org/10.1016/j.jhazmat.2024.134244
Wu, H., Abasova, L., Cheregi, O., Deák, Z., Gao, K., & Vass, I. (2011). D1 protein turnover is involved in protection of Photosystem II against UV-B induced damage in the cyanobacterium Arthrospira (Spirulina) platensis. Journal of Photochemistry and Photobiology B: Biology, 104(1-2), 320-325. https://doi.org/10.1016/j.jphotobiol.2011.01.004
Yadav, P., Singh, R. P., Rana, S., Joshi, D., Kumar, D., Bhardwaj, N., Gupta, R. K., & Kumar, A. (2022). Mechanisms of stress tolerance in cyanobacteria under extreme conditions. Stresses, 2(4), 531-549. https://doi.org/10.3390/stresses2040036
Zanolla, V., Biondi, N., Niccolai, A., Abiusi, F., Adessi, A., Rodolfi, L., & Tredici, M. R. (2022). Protein, phycocyanin, and polysaccharide production by Arthrospira platensis grown with LED light in annular photobioreactors. Journal of Applied Phycology, 34(3), 1189-1199. https://doi.org/10.1007/s10811-022-02707-0
Zapata, D., Arroyave, C., Cardona, L., Aristizábal, A., Poschenrieder, C., & Llugany, M. (2021). Phytohormone production and morphology of Spirulina platensis grown in dairy wastewaters. Algal Research, 59, 102469.  https://doi.org/10.1016/j.algal.2021.102469