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Characterization and identification of bacteria and microorganisms are crucial in 

several fields such as medical, agricultural, and industrial microbiology. 

Conventional phenotype-based identification methods use low-precision scoring 

systems and therefore are affected by species phenotypic variations. These methods 

have low levels of reproducibility, which results in a decrease in the accuracy 

coefficient. Furthermore, conventional phenotype-based identification techniques 

include several methods, such as observation of growth and colony morphology, 

biochemical characterization, and conventional available biochemical methods, 

that are less accurate. Molecular-based methods have better strategies to identify 

and characterize microorganisms and bacteria. The development of molecular-

based techniques has improved our ability to identify bacterial species in culture-

dependent and culture-independent samples. Most of these techniques are only 

capable of identifying single bacterial strains or small groups of organisms at a 

time. However, some methods can be used to identify and characterize the bacterial 

communities in a range of hundreds to thousands of single strains. We also know 

that each of these methods has weaknesses and shortcomings that limit their 

application and usability. However, some of these methods have the strengths and 

potentials to improve conventional methods and to compensate for their 

shortcomings. In the present review, we highlighted recent progress in the field of 

bacterial characterization and identification using molecular-based techniques and 

discussed their abilities and limitations.  
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1. Introduction

Environments, such as soil, foods, etc., are 

natural resources for many microbial species. 

These species have been isolated, 

characterized, and identified for economic 

and industrial applications (Escobar-Niño et 

al. 2014; Mohseni, Ebrahimi, and Chaichi 

2015; Emruzi et al. 2018; Assareh et al. 

2012), medicine, and health approaches (Abd 

Alfadil et al. 2018; Zarei et al. 2011). These 

approaches have led to a dramatic increase in 

microbial studies, and in the same vein, in 

recent years, various techniques have been 
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developed to identify and characterize 

bacterial genomes. Many studies have 

reported that genomic sequencing relies on 

the growth of bacteria in the culture medium 

(Tashakor et al. 2017; Gholami et al. 2015). 

In contrast, in novel genomics, large amounts 

of DNA template achieved from cell cultures 

are required for genomic sequencing. 

However, most bacterial species remain 

uncultured and could not be sequenced 

(Lasken and McLean 2014). Methods for 

identifying bacteria need to be improved 

owing to the importance of these 

microorganisms, and focus on these 

techniques is necessary. 

   In this review, we will investigate the 

induction and recovery of bacteria from 

culture-dependent and culture-independent 

samples based on the recent developments in 

bacterial identification and characterization. 

The strengths and limitations of these 

techniques on molecular and genetic levels 

are also addressed (Table 1).  

Table 1. Methods for identification and characterization of bacterial strains, as well as their strengths and limitations. 

Methods Strengths Limitations References 

16S rDNA PCR 1) Study of the microbial

diversity in systems 

2) Extension of the biodiversity

patterns 

1) Restricted by the short read

length obtained, sequencing errors 

2) Difficulties in the measurement

of OTUs 

(Sogin et al. 2006; 

Quince et al. 2009; 

Youssef et al. 2009; 

Huse et al. 2010; 

Saxena et al. 2014; 

Mitani et al. 2005) 

Multiplex PCR 1) Identification of more than

two bacterial strains genes 

2) Less cost and time to obtain

products 

3) Can be used in a Real-time

PCR format 

1) Analysis of the limited number of

genes in one reaction 

2) Need to pre-identification to

species level 

(Casey and 

Bosworth 2009; 

Rajtak et al. 2011; 

Cleven et al. 2006) 

Microarray-based 

microbial identification 

1) Monitoring an individual or

small samples of organisms 

2) No  need to pre-culture

bacteria 

3) Less total assay time for

microbial identification 

1) Difficulty distinguishing between

closely related bacterial species 

solely by 16S rDNA probes  

2) There is no information about

strain-specific characterizations 

3) Has not been widely used in the

identification of bacterial species 

(Cleven et al. 2006; 

Gentry and Zhou 

2006; Ye et al. 

2001) 

Multiple displacement 

amplification (MDA) 

1) Does not require single cells

culturing 

2) The use of random hexamer

primers 

3) Longer Amplicons produced

by the φ29 DNA polymerase 

than those achieved by PCR 

1) Highly susceptible to

contamination 

2) The loss of some sequences due

to the significant amplification bias 

of single cells  

3) Need the constitution of the

amplified DNA library 

(Raghunathan et al. 

2005; Salas and de 

Vega 2016; Detter 

et al. 2002) 
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Table 1 (continued) 

Methods Strengths Limitations References 

Fluorescence in situ 

hybridization (FISH) 

1) Bacterial identification

within complex mixtures of 

other bacteria 

2) It could be useful as a

routine technique, but 

probably leads to errors and 

contamination 

1) Expensive test

2) Need to pre-identification

procedures 

3) Concerns about the sensitivity of the

FISH as a microscopic method 

(Bottari et al. 2006; 

Schmiedel et al. 

2014) 

Massive DNA sequencing 1) Amplification of the 16S

rDNA sequence for all of the 

bacterial species with 

minimum bias 

2) Identification of all

mixed bacterial species 

3) Determination of

antimicrobial resistance 

genes of bacteria without 

isolation and purification in 

the medium 

1) Bias in the relative amplification

efficiency of 16S rDNA from the 

heterogeneous samples 

2) Reliable 16S rDNA sequencing

only when the samples contain a 

single bacterial species 

(Cai, Caswell, and 

Prescott 2014; 

Suzuki and 

Giovannoni 1996) 

Real-time PCR 1) Higher sensitivity,

accuracy, and possibility of 

determination of DNA 

amplification 

2) Can be quantitative or

semi-quantitative 

1) Analysis of a limited number of

genes in one reaction. 

2) Pre-identification to species level

(Cai et al. 2005; 

Cleven et al. 2006) 

Random amplification of 

polymorphic DNA-PCR 

(RAPD-PCR) 

1) Suitability for work on

anonymous genomes 

2) The applicability of this

method is for limited 

quantities of DNA  

3) High efficiency and low

expense 

1) Difficulties in distinguishing

homozygotes and heterozygotes 

2) Susceptibility to alterations in the

quality of DNA, PCR conditions and 

components  

(Kumari 2014; Arif 

et al. 2010) 

Restriction fragment 

length polymorphism 

(RFLP) 

1) Abilities in the molecular

epidemiology of infectious 

outbreaks  

2) High specificity and

reproducibility 

3) Ability to give the relative

amounts of different bacteria 

in a sample  

1) Low discriminatory power

2) Expensive to run

(Tabit 2016; Mitani 

et al. 2005) 
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Table 1 (continued) 

Methods Strengths Limitations References 

Amplified fragment length 

polymorphism (AFLP) 

1) High discriminatory

power 

2) The discriminatory

potential of genomic DNA 

1) Higher probability of producing

inconclusive results because of DNA 

degradation 

2) Requires expertise to run analysis

(Tabit 2016; 

Franco-Duarte et al. 

2019) 

Pulsed-field gel 

electrophoresis (PFGE) 

1) High discriminatory

power 

2) Possible to cleave band

from gel for amplification 

and sequencing 

1) Labor-intensive with about four

days to complete the protocols 

2) High inconclusive result

3) The same separation of DNA

sequences of different bacterial 

species  

(Klaassen, van 

Haren, and 

Horrevorts 2002) 

2. The 16S rDNA PCR analysis

The 16S ribosomal deoxyribonucleic acid 

(rDNA) sequencing analysis is a standard 

method for the direct identification of 

microbial populations in environmental 

samples, which were used for the first time by 

Carl Woese as a phylogenetic marker to 

discover three kingdom classification 

schemes (Woese and Fox 1977). In this 

method, DNA extracted from the 

environmental sample is used as a template 

for 16S rDNA amplified by the polymerase 

chain reaction (PCR) using universal primers. 

A mixture of 16S rDNA fragments from 

different cells in the environmental samples 

are then cloned and subsequently sequenced 

(Jo, Kennedy, and Kong 2016; Zarei et al. 

2012; Khaleghinejad et al. 2015; Babashpour 

et al. 2011). The achieved sequences are 

analyzed, and taxonomic affiliations 

performed using bioinformatics alignments 

against sequence databases (Figure 1) 

(Rosselli et al. 2016). This method has been 

adopted for the study of the microbial 

diversity in systems from oceans (Whalan 

and Webster 2014; Mohit et al. 2014; Biers, 

Sun, and Howard 2009) to soils (Rahman et 

al. 2014; Gholami D. et al. 2014b, 2014a; Luo 

et al. 2014), as well as Antarctic lakes (Møller 

et al. 2013; Murray et al. 2012), and Antarctic 

soils (Frank-Fahle et al. 2014; Niederberger 

et al. 2008). Moreover, many parallel 

sequencing methods for the identification and 

characterization of microbial communities 

rely on the amplification of the 16S rDNA, 

which has led to the extension of biodiversity 

patterns (Sogin et al. 2006). However, this 

technique is restricted by the short read 

length obtained, sequencing errors (Quince et 

al. 2009), differences originating from the 

different fragments selected (Youssef et al. 

2009), and difficulties in measurement of 

operational taxonomic units (OTUs) (Huse et 

al. 2010). In addition, when using single-gene 

markers, the assessment of diversity is 

challenging because of the prevalence of 

horizontal gene transfer and the concern 

inherent in bacterial species (10-12). 

Furthermore, where there are closely related 

bacterial species, the resolution of the 16S 

rDNA is limited (Poretsky et al. 2014).
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Figure 1. Outline of the 16S rRNA sequencing. DNA extraction is followed by 16S rRNA gene amplification, then 

the PCR product is cloned and sequenced. Finally, the sequences are blasted, and bioinformatics tools are used to draw 

the phylogenetic tree.  

3. Multiplex PCR assays

The multiplex PCR identifies more than two 

genes of bacterial strains. This has resulted in 

less cost and time to obtain products 

compared to regular single PCR assays 

(Casey and Bosworth 2009). Furthermore, 

this method can be used in a Real-time PCR 

format for multiple different targets by 

measuring the melting temperature of PCR 

amplicons with conventional double-strand 

DNA dyes such as SYBR Green (Rajtak et al. 

2011; Li et al. 2017).  
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   However, there are limitations to using the 

multiplex PCR, including the limited number 

of genes that can be analyzed in one reaction. 

Also, we need a pre-identification to species 

level when applying multiplex PCR (Cleven 

et al. 2006).   

4. Microarray-based microbial 

identification 

Multiplex PCR is not suitable to be used in 

multiple bacterial identifications due to 

challenging conditions in the setup process 

and validation. The DNA microarray is an 

advanced method for multiple microbial 

identifications. The development of this 

method dramatically helps microbiologists to 

monitor an individual or small samples of 

organisms (Gentry and Zhou 2006; Cleven et 

al. 2006; Cao et al. 2011). In microarray 

methods, the hybridization-based detection 

of multiple targets occurs (Loy and Bodrossy 

2006; Bodrossy and Sessitsch 2004). 

   In DNA microarray technology, the desired 

DNA probes (ordered probes specific to 

target genomes) are spotted on a nonporous 

solid surface in a lattice pattern. The target 

DNA is then labeled with a reporter 

molecule, such as fluorescence dye, and then 

hybridized to the probe. Next, specific target 

probe duplexes are detected by assessing the 

fluorescent signals related to each spot on the 

DNA chip (microarray). There are two types 

of DNA microarrays: i) a PCR product-based 

DNA microarray and ii) an oligonucleotide-

based DNA microarray. Both types of DNA 

microarrays are applied to identify bacterial 

species (Sato et al. 2010; Ye et al. 2001). In 

both methods, the hybridization between 

labeled DNA in the sample and probe DNA 

is performed. Microarrays can be fabricated 

either by spotting pre-existing DNA, such as 

cDNA microarrays or by direct synthesis of 

oligonucleotides on the solid surface. Finally, 

data are analyzed based on the differences 

between expression profiles (according to the 

color type of wells) to identify specific genes 

involved in bacterial species (Figure 2). 

Conventional identification of bacterial 

strains often relies on the culture base, while 

in microarray base analysis, the bacteria do 

not require pre-culture. Therefore, in 

conventional identification, the cultivation 

yield can be identified in days or up to a week 

after sampling. Additionally, while the 

cultivation of bacteria under laboratory 

conditions is difficult, in the microarray 

technique, the total assay time for microbial 

identification is only three hours, and this 

time includes the DNA extraction, PCR, and 

steps of microarray in sequence (Järvinen et 

al. 2009; Marlowe et al. 2003; Bekal et al. 

2003). However, microbiologists tend to 

identify bacteria at the genus and/or species 

level. This is a problem because 

distinguishing between closely related 

bacterial species solely by 16S rDNA probes 

is difficult. The preferred strategy to solve 

this problem is by sequencing the whole 16S 

rDNA (Janda and Abbott 2007).  

   The main drawback of assays using 

oligonucleotide probes that rely on rRNA 

(e.g., the rRNA microarray technique) is that 

it allows only species identification using the 

rRNA probes. It does not give us any 

information about strain-specific 

characterizations (Cleven et al. 2006).  

   Therefore, this method is not widely used 

in the identification of bacterial species 

because optimizing and validating the PCR as 

well as the steps of the microarray is difficult. 

Some studies have proposed resolving all of 

the mentioned problems by using whole 

DNA microarray technology, which allows 
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the simultaneous identification of a wide 

variety of genes (Cleven et al. 2006; Ye et al. 

2001).

Figure 2. The workflow of bacterial identification using DNA microarray. DNA was extracted from bacterial samples, 

labeled with fluorescence dyes, and hybridized to the spotted pre-existing DNA probes or direct synthesis of 

oligonucleotides on the solid surface face. Finally, scanning was performed by a laser scanner, and data analysis 

processed by computer tools.  

5. Multiple displacement amplification

The multiple displacement amplification 

(MDA) amplifies DNA templates using φ 29 

DNA polymerase and random primers (Dean 

et al. 2001; Ellegaard, Klasson, and 

Andersson 2013). In this method, a single 

bacterial genome is amplified more than 

several- billion-fold. This method is used for 

the identification of new bacterial species, 

polymorphism analysis, and characterization 
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of pathogens (Raghunathan et al. 2005).  In 

this process, the bacterial cells are sorted into 

a microtiter plate by Fluorescence-activated 

cell sorting (FACS). Next, the single cells are 

lysed and total-genome amplification is 

carried out (Figure 3). 

Figure 3. The MDA is a DNA amplification technique. This method sequences the single cell’s DNA of uncultured 

bacteria. 

After obtained whole genomes by MDA, it is 

highly recommended that the identities of the 

single or population amplified genome 

should be confirmed by 16S rDNA 

sequencing. Furthermore, amplified genomes 

can also be sequenced by a shotgun method 

on a range of high-throughput platforms.  

6. Fluorescence in situ hybridization

Fluorescence in situ hybridization (FISH) 

(Jensen et al. 2015) is a well-established 

culture-independent method for bacterial 

identification that uses fluorescence 

oligonucleotide probes, which rely on 16S 

rDNA sequence for bacterial identification of 

the genus and/or species level (Cai, Caswell, 

and Prescott 2014). It is hard to identify 

bacteria within complex mixtures of other 

bacteria when using this specific research 

tool. Moreover, the FISH, despite its 

extraordinary abilities, is an expensive test, 

and pre-identification procedures are 

required (Bottari et al. 2006). The protocols 

for this method follows four steps: 1) Sample 

containing the target cells is fixed and 

permeabilized to allow penetration of the 

fluorescence probes into the cells, 2) The 

fixed cells are hybridized in a buffer 

containing the fluorescein-labeled probes at a 

specific temperature and under stringent 

conditions, 3) then the resultant is washed to 

remove unbound probes, and 4) finally, 

visualization and photographic analysis of 

the hybridized cells are performed by 

epifluorescence microscopy or flow 

cytometry (Figure 4).
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Figure 4. Fluorescence in situ hybridization is a rapid and accurate procedure for the identification of bacterial 

communities in different media. In this method, the sample is fixed to stabilize the cells and permeabilize the cell 

membranes. The FISH probes are added, and the 16S rRNA of the target bacteria are then hybridized with the FISH 

probes while the excess probes are washed. The resultant is subsequently analyzed by flow cytometry or 

epifluorescence microscopy.  

The FISH method has the potential to 

approve data obtained with culture and PCR 

based methods. Where amplification-based 

techniques cannot be considered as routine, 

the FISH method is a helpful diagnostic tool 

for bacterial identification (Mallmann et al. 

2010). Furthermore, this method can be used 

in the identification of the more abundant or 

invasive species in mixed infections 

(Kornreich et al. 2012; Schmiedel et al. 

2014). The FISH method can also be useful, 

as routine techniques probably lead to errors 

and contaminations. However, there are 

concerns about the sensitivity of the FISH as 

a microscopic method. As the probe panel 

needs to be enlarged, the identification of the 

small microorganisms, such as intracellular 

microorganisms, with FISH remains 

challenging. In these cases, specific PCR 

assays will be able to identify the bacterial 

species (Schmiedel et al. 2014).   

7. Other techniques for bacterial

identification 

7.1. Colorimetric sensor array 

The colorimetric sensor array is a rapid 

identification method of the bacteria grown 

on nutrient media such as nutrient agar. This 

method is a simple research tool used for 

bacterial studies and optimization of bacterial 

production in the fermentation process 

(Carey et al. 2011). 

  7.2. Massive DNA sequencing 

Specific PCR methods and DNA 

microarrays mentioned above can identify 

only earlier described bacterial species, and 

likely, novel or emerging bacteria will not be 

detected. This problem can be overcome by 

using universal primers to amplify and also 

sequencing in all bacterial species. The 

standard universal primer for the 

identification of bacterial is the 16S rDNA 

sequence. However, 16S rDNA sequencing is 

reliable only when the samples contain a 

single bacterial species. The bias in the 

relative amplification efficiency of 16S 
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rDNA from heterogeneous samples is yet 

another problem in this method (Suzuki and 

Giovannoni 1996).  

   Massive DNA sequencing is a method that 

amplifies the 16S rDNA sequence for all of 

the bacterial species with minimum bias, and 

therefore, identifies all mixed bacterial 

species (Hosokawa et al. 2017). The 

antimicrobial resistance genes of bacteria can 

be determined by this method without 

isolation and purification in the medium (Cai, 

Caswell, and Prescott 2014).   

7.3. Real-time PCR 

A molecular technique applied to monitor 

the amplification of the DNA or RNA 

sequence is known as real-time PCR. It is the 

cyclic reaction in which the gene of interest 

is amplified and quantified (Valones et al. 

2009). Real-time PCR requires a 

thermocycler equipped with an optical 

system to receive fluorescence. This 

technique also needs computer software for 

analyzing the data of the reaction. The 

emitted fluorescence produces a signal in 

direct proportion with the amount of PCR 

products. The recorded fluorescence signals 

in each cycle exposed the amount of 

amplified product. The primer design is 

based on the alignment sequence of over one 

million bacteria 16S rDNA gene sequences. 

The design of the required primers was 

performed by software designers utilizing the 

RefSeq sequences of the GenBank databases. 

Real-time PCR was done for semi-

quantification of the mRNA expression of 

genes containing the SYBR Green real-time 

PCR Master Mix primers and an adequate 

amount of cDNA (Valones et al. 2009; 

Dariush et al. 2019).  

This method has many advantages over 

conventional PCR, including higher 

sensitivity, accuracy, and the possibility of 

determination of DNA amplification using 

fluorescence intensity. Real-time PCR has 

various applications within research 

laboratories, and this method can be 

quantitative or semi-quantitative (Franco-

Duarte et al. 2019).   

   Real-time PCR is a more specific and 

inexpensive method compared to gel-based 

PCR assays. Also, it is possible to use one set 

of universal primers, such as 16S rRNA, and 

multiple specific probes to identified 

different genes of bacterial strains. Although 

the universal primers amplify the abundant 

bacteria in which false-negative results are 

probable, especially if a smaller population of 

bacteria is used (Cai et al. 2005).   

7.4. Random amplification of polymorphic 

DNA-PCR 

The random amplification of polymorphic 

DNA (RADP)-PCR engaged shorter primers 

with a length of 8-12 nucleotides with 

optional sequences that bind to the 

nonspecific sites on the template DNA of 

microorganisms. This helps in preparing a 

unique profile for bacterial identification 

because of the amplification of repetitive 

regions of template DNA (Jones and 

Kortenkamp 2000). This type of PCR can use 

isolated DNA or bacterial lysates then subject 

them to amplification in the presence of 

RAPD primers and magnesium to increase 

nonspecific annealing (Baker, Crumley, and 

Eckdahl 2002). Next, agarose gel 

electrophoresis is conducted on the amplified 

products to produce unique RAPD 

fingerprints. This method can be used to 
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identify a wide range of bacterial species that 

have not been identified because no prior 

knowledge of the target genomic sequence 

for RADP-PCR is required (Saxena et al. 

2014). The main advantages of this method 

are its suitability for anonymous genomes (in 

which RADP-PCR sequencing enables 

researchers to obtain all the benefits of 

genomic sequencing without needing to share 

any particular information) and that it is very 

applicable where only limited quantities of 

DNA are available. Furthermore, this 

technology has high efficiency and low 

expense. The primers used in this technique 

are easy to purchase and do not require basic 

genetic and genomic information (Kumari 

2014). However, homozygotes and 

heterozygotes cannot be distinguished by the 

current technology. This technique is very 

susceptible to changes in the quality of DNA, 

PCR conditions, and components leading to 

alterations of the amplified fragments (Arif et 

al. 2010; Kumari 2014).  

7.5. Restriction fragment length 

polymorphism 

Restriction fragment length polymorphism 

(RFLP) is a DNA variation that exploits 

polymorphisms in homologous DNA 

sequences to identify bacterial strains. The 

RFLP engages restriction enzymes, which 

can cut amplified DNA into DNA fragments. 

The DNA fragments are separated by agarose 

gel electrophoresis to produce unique 

patterns of bands for each bacterial strain. 

The bonding patterns are very similar in this 

method if the bacterial strains are closely 

related. Therefore, the RFLP is a suitable tool 

to survey the molecular epidemiology of 

infectious outbreaks to determine one or 

more pathogens involved in the outbreak 

(Mitani et al. 2005).  

7.6. Amplified fragment length 

polymorphism 

In amplified fragment length polymorphism 

(AFLP), restriction enzymes fragment 

genomic DNA, and ligated adaptors then 

amplify a subset of restriction fragments. In 

this method, primers are complementary to 

the adaptor sequences but have certain unique 

nucleotides; thus, only a small number of 

restriction fragments are selectively 

amplified. Gel electrophoresis is used to 

analyze the AFLP fingerprints and 

determines the yielding of distinct DNA 

fragments from a single strain genomic DNA. 

The application of AFLP in an intensive care 

unit (ICU) to investigate Pseudomonas 

aeruginosa in an outbreak has received a lot 

of attention (Bukholm et al. 2002). When 

there is no knowledge of the bacterial 

genomic sequence, the AFLP is a useful tool 

to determine the high specificity and 

discriminatory potential of genomic DNA 

(Franco-Duarte et al. 2019). However, there 

is more probability of producing inconclusive 

results because of DNA degradation. Also, 

this technology is very specialized and 

requires expertise to run the analysis (Tabit 

2016). 

7.7. Pulsed-field gel electrophoresis 

Pulsed-field gel electrophoresis (PFGE) is a 

laboratory technique that separated large 

fragments of DNA and is a beneficial 

procedure for the characterization and 

identification of bacterial strains for 

epidemiological studies. In this technique, 

enzymes and detergents are applied to pure 

bacteria in agarose that release chromosomal 

DNA. The restriction enzymes cut agarose 

plugs at specific regions to produce a 
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restricted number of DNA fragments. Next, 

an electric current is applied to these plugs 

which are then subjected to alternate rotations 

in a magnetic field causing the DNA 

fragments to separate  by fragment size, and 

finally, the banding patterns emerge (Parizad, 

Parizad, and Valizadeh 2016). This technique 

has challenges such as time-consuming 

protocols and high false results (Klaassen, 

van Haren, and Horrevorts 2002). 

7.8. Metagenomics approaches 

Metagenomics is a vital advancement 

method in which total DNA obtained from 

environmental samples is sequenced 

(Greninger 2018; Howe and Chain 2015; 

Datta et al. 2020). This method has revealed 

novel insights into a broad range of 

environmental samples. The process of 

metagenomic begins as an extension of local 

sequence alignments, and then each of the 

sequencing read is blasted with the other 

ones. Then, the highest-scoring pairs are 

selected, and overlapping sequences are 

identified for extension into the more 

extensive contiguous sequences. These 

sequences are developed for Sanger 

sequencing or next-generation sequencing 

(NGS) technologies (Howe and Chain 2015). 

Moreover, microbiome projects, such as the 

Human Microbiome Project (HMP) and Gut 

Microbiome Project (GMP), have been 

initiated to highlight the importance of 

metagenomics and un-cultural 

microorganisms (Datta et al. 2020).  

   Metagenomics has two specific sequencing 

strategies: amplicon sequencing in which the 

16S rRNA gene is used as a phylogenetic 

marker, and shotgun sequencing that 

sequences whole given genomic DNA within 

a sample (Rausch et al. 2019; Gholami et al. 

2018). The use of the 16S rRNA gene has 

proven to be a cost-effective phylogenetic 

marker strategy for microbiome study. 

However, the protocols of the PCR-based 

phylogenetic marker are susceptible to biases 

by sample preparation and sequencing errors 

(Langille et al. 2013). Moreover, 16S rRNA 

gene amplicon sequencing is restricted to 

taxonomic classification at the genus level 

according to the available database used, so it 

gives us only limited functional information 

(Walsh et al. 2018). Therefore, these 

limitations of amplicon-based bacterial 

community studies raise concerns about the 

reproducibility of 16S rRNA gene amplicon 

sequencing and have resulted in an increased 

interest in developing techniques, such as 

shotgun metagenomics, with more accuracy 

and reproducibility for preparation and 

sequencing of amplicon libraries (Gohl et al. 

2016; Faith et al. 2013).  

   Unlike 16S rRNA gene amplicon 

sequencing that only targets the 16S rRNA 

gene, shotgun metagenomics sequences the 

whole genomic DNA from bacteria 

(Brumfield et al. 2020). In this method, the 

library preparation includes random 

segmentation and adapter ligation. The 

typical process of using shotgun 

metagenomics data for the analysis of 

bacterial taxonomy is comprised of quality 

trimming and comparison to a reference 

database to produce a taxonomy profile. As 

the shotgun metagenomics sequencing gives 

all genetic information in the bacteria, the 

data can be used for other applications such 

as antibiotic resistance gene profiling and 

metabolic function profiling (Laudadio I 

2019).  
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   Shotgun metagenomics examines the 

functional relationships between hosts and 

bacteria by determining the functional 

content of samples directly (Faith et al. 2013; 

Walsh et al. 2018). Therefore, this method 

can detect unknown bacterial life that would 

otherwise remain unclassifiable (Rinke et al. 

2013). However, the high cost of shotgun 

metagenomics and bioinformatics needs have 

further hampered its use for large-scale 

microbiome analysis (Walsh et al. 2018). 

   Obtaining sufficient sequences from the 

many organisms within the ecosystems is 

difficult. The abundance of different 

communities had led to some genomes being 

covered over many years, while others are 

covered by a handful of sequencing reads 

(Howe and Chain 2015). Also, the assembly 

of genes and single genomes is a challenge 

because of the high diversity of large 

microbial communities (Zhang et al. 2018; 

Alves et al. 2018).  

8. Conclusion

The review has attempted to give a brief 

overview of past and current molecular 

techniques for the identification and 

classification of bacterial species. Sensitive 

and rapid detection of bacteria is now 

possible because of significant advances that 

have occurred in PCR and microarray assay. 

The development of the PCR and molecular 

genetic sequencing techniques has made it 

possible for culture-independent bacterial 

identifications. In recent years, a high-

throughput 16S rDNA sequence in parallel to 

other high-throughput DNA sequencing 

techniques has proven more beneficial for the 

identification of novel bacterial species. 

Real-time PCR has been applied for the 

sensitive identification of bacteria in different 

resources, including food, water, and 

animal/human tissues. Additionally, the 

microarray assay investigates the diversity of 

bacterial communities. At the same time, 

there are some technical difficulties, such as 

the extraction of materials from specific and 

complex environmental or biological samples 

and the availability of specific target 

sequences for the identification of specific 

bacteria, that need to be addressed. A 

significant challenge for all sequencing 

technologies is the validation of the 

technologies to establish the sensitivity and 

specificity of these methods for bacterial 

identification.     
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