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 The estimation of algal biomass requires monitoring the growth of microalgae.  

In contrast to time-consuming methods such as cell counting, spectrophotometry 

was developed as a straightforward, quick, and explicit method to measure biomass 

concentration. Non-linear models can appropriately describe the patterns of growth 

and product formation, which are necessary for any biotechnological process using 

microorganisms. This study investigated the relationship between algal 

concentration and absorbance in the 600-750 nm wavelength range. Four 

mathematical growth non-linear models were utilized to analyze and confirm 

growth curve-based absorbance data obtained from Chlorella sorokiniana and 

Chlorella sp. The calibration curve was then created by relating the absorbance 

value (680 nm) with the cell density and dry weight measurements and calculating 

the correlation coefficient. Then, the absorbance derivative was estimated to 

improve the algal concentration detection limit. A prediction model was created 

that considered the application of spectrophotometry data to the growth of 

Chlorella sorokiniana and Chlorella sp. The Exponential Plateau model was 

selected to describe the growth of both Chlorella sorokiniana and Chlorella sp. The 

significance criteria, i.e., high regression coefficients (R
2
) and low root-mean-

square error (RMSE), indicated that the models used fitted the experimental data 

well, and may be considered sufficient to characterize biomass concentration. In 

addition, percentile deviation revealed that the equations obtained in this study 

could be used to estimate densities with an error of less than 5% for up to 10
7
 cells 

mL
-1  

 and a dry weight of 0.02-1.24 in Chlorella sorokiniana and 10% for 0.03-

1.18 g L
-1

 in Chlorella sp. cultures. 
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1. Introduction 

There has been rising interest in using marine 

organisms to create high-value functional foods 

that are both nutritious and beneficial to human 

health. Microalgae are the only marine resources 

that yield a wide range of bioactive chemicals in 

terms of structure and chemical composition 

(Cunha & Grenha, 2016). Microalgae have long 

been used to produce phytochemicals and are 

now becoming a significant industry (Cunha & 

Grenha, 2016). In many parts of Asia, marine 

algae constitute an essential part of the diet. 

Microalgae (Nostoc sp.) were first utilized as 
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food in China over 20 centuries ago, and later, 

Japan, Mexico, and Taiwan began consuming 

Chlorella sp. and Spirulina sp. as salutary foods 

in commercial forms (Cunha & Grenha, 2016). 

Prehistorically, microalgae have also been used in 

traditional medicine as a source of nutrients (Ale 

& Meyer, 2013). 

Marine microalgae production has the 

advantage of being easy and requiring only a 

simple medium containing seawater (a source of 

nitrogen, phosphate, iron, magnesium, and certain 

minor minerals) (Cunha & Grenha, 2016). 

Although microalgae cultivation has garnered a 

lot of attention over the past decades, it still faces 

many challenges in monitoring on a large scale. 

Regarding the relevance of microalgae, 

significant efforts are being made to investigate, 

develop, and commercialize various aspects of 

monitoring cell microalgae growth (Santos-

Ballardo et al., 2015). Currently, dry weight 

determination and cell count using a 

hemocytometer are the most popular ways of 

assessing cell growth. Dry weight determination 

is a practical but time- and material-consuming 

technique to evaluate microalgal growth. Direct 

cell counting, on the other hand, requires time 

and operator expertise (Baldisserotto et al., 2022). 

The limited growth rate of microalgae and the 

time-consuming nature of conventional growth 

monitoring methods affect the commercial 

profitability of microalgae cultivation. 

Consequently, efforts have intensified to develop 

microalgae biomass measurement methods that 

are simpler, more precise, and faster (Ambriz-

Pérez et al., 2021). For example, optical density 

(OD) can be used for rapid and reliable indirect 

measurement of microalgal cell density and 

biomass concentration that correlates light 

absorbance with the algal cell density and dry 

weight at specific wavelengths (Cunha & Grenha, 

2016, Schagerl et al., 2022). Alternately, 

microorganisms' behavior under various chemical 

and physical variables, such as pH, time, and 

temperature, may be described using 

mathematical models (Hanief et al., 2020). 

Mathematical modelling of microbial growth has 

been frequently utilized to calculate cell growth. 

The established microbial growth models have 

generally been mathematically simulated so that 

the theory derived from the models is relevant to 

experimental results. Over the past few decades, 

several non-linear growth models, such as 

Gompertz, Richards, modified Richards, Logistic, 

Exponential plateau, Beta growth, Schnute, and 

Stannard, have been proposed by researchers to 

characterize and predict the growth parameters of 

microalgae (Cunha & Grenha, 2016; Islam et al., 

2022). For example, the Gompertz model has 

generally proven to be a more flexible and 

accurate way to adapt to growth data compared to 

other alternative models. The internal dynamic is 

represented by the logistic growth curve for both 

homogeneous and heterogeneous cell 

populations.  Moreover, Pruitt and Kamau found 

each cell population in an exponential model dies 

at a rate that is directly proportionate to its size at 

any given time(Pruitt & kamau, 1993).  

Additionally, the biomass mass balance is 

described using the logistic equation for the 

maximum biomass concentration of microalgae.  

In this work, the spectrophotometric approach 

was employed to evaluate the maximum 

absorbance of two green microalga strains 

isolated from the Persian Gulf and Qeshm Island 

of Iran, Chlorella sorokiniana and Chlorella sp. 

Moreover, four non-linear models, Exponential 

plateau, Gompertz, Logistic, and Beta growth 

models, were applied to describe the growth of 

the green microalgae species. The growth kinetics 

of both microalgae species were studied, and a 

regression model was calibrated using 

spectrophotometric absorbance to estimate cell 

density (cells mL−1) and dry weight (g L-1), 

resulting in an efficient, fast, stable, and selective 

approach for measuring microalgae biomass 

concentration.  

1. Material and methods 

2.1. Growth conditions 

Chlorella sorokiniana and Chlorella sp. were 

deposited as strains M8011 and M8010 in the 

Persian Type Culture Collection (PTCC) after 

being discovered from the seawater in the Persian 
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Gulf close to Qeshm island (26°32 N, 53°56 E) in 

southern Iran. They were grown in BBM medium 

in Erlenmeyer flasks. The cultures were kept at 

ambient temperature and subjected to an 

irradiance level of 70 mol photons m
−2

s
−1 

while 

being exposed to fluorescent lighting in a cycle of 

12: 12 hours of light/ dark, respectively. 

2.2. Maximum absorbance determination 

Maximum absorbance was calculated for each 

species of microalgae by scanning sample 

cultures with a UV-Vis spectrophotometer 

(BioTek, Epoch, Gen5) between the wavelengths 

of 600 and 750 nanometers.  Then, the maximum 

absorbance value for each microalga was used as 

the input to generate an optical density (OD) 

growth curve (Cunha & Grenha, 2016). 

2.3. Statistical models 

Microalgae growth was analyzed using several 

different non-linear mathematical models, 

including the Gompertz, Logistic, Exponential 

plateau, and Beta growth. The Logistic, 

Gompertz, Beta growth, and Exponential plateau 

equations used to calculate the growth of 

Chlorella sorokiniana and Chlorella sp. during 

cultivation are shown in Eqs.1, 2, 3, and 4, 

respectively (Cunha & Grenha, 2016):  

 

                                                                                                                                 

(1)           

                                                                                                 

(2)  

 

 

where B is the relative growth rate at time M 

(day
-1

), A is the asymptotic ln (OD)t/(OD)0 as t 

drops endlessly, and C is the asymptotic ln 

(OD)t/(OD)0 as t grows endlessly.  

(1)                         

  

 

where Ym  is asymptotic ln (OD)t/(OD)0 at 

the peak,  is the time at asymptotic ln 

(OD)t/(OD)0 as increases, and  is the time of 

growth point.  

 

                                                                           

(2) 

 

where Y0 is ln (OD)t/(OD)0 at the t0, Ym ln 

(OD)t/(OD)0 as t increases indefinitely, and K is 

the relative growth rate at the time. In general, t is 

the time (day), M is the time at which the 

absolute growth rate is at its maximum (day), ODt 

is the optical cell density at time t, and (OD)0 is 

the initial optical cell density. 

 2.4. Cell growth efficiency 

Cell growth was tracked and measured three 

times a day until the culture reached the 

stationary phase, at which point it was declared 

dead. Three distinct types of analysis were used 

as follows: 1. cell density (cells mL
−1

) was 

measured using a Neubauer chamber and 

microscope (Olympus CX40, NY, USA).  2. The 

absorbance of cell suspensions was evaluated by 

a UV-visible spectrophotometer (BioTek, Epoch, 

Gen5), determination of the biomass's dry weight 

at 60°C. 3. Specific growth rate and duplication 

time were measured using the growth kinetics 

(Godoy-Hernández & Vázquez-Flota, 2006). 

Specific growth rate (μ) and duplication time (dt) 

(Eqs. 5 and 6) or doubling time
-1

 of the 

microalgae were calculated in the following 

equation (Adar et al., 2016):                                                                                                                                                    

                                                                                                                      

(3) 

 
where ODt and OD0 are the optical density at 

times t2 and t0, and k or μ is expressed in time
–1

.  

Equation 6 was used for calculating duplication 

time:  

 

                                                                                                                                  

(4)                                                                                                                                                                                                                            

2.5. Predictive models 

The predictive models were created by applying 

Eqs. 7, 8, and 9 to determine the relationship 
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between spectrophotometric absorbance and cell 

counting, absorbance and dry weight, and cell 

counting and dry weight, respectively: 

Abs = β0 + β1(cells mL
−1

) + β2 (cells mL
−1

)
2                               

                                              

(5) 
2 

                                                                            

(8)       

                                                                 

(9)    

 
 

The coefficient of determination (R
2
), adjusted 

determination coefficient (R
2
 adj), and root mean 

square error (RMSE) were evaluated as 

performance parameters as follows: 

 

 

                                                                                                                                                          

(10) 

                                                                        

(11) 

                                                                                         

(12) 

 

where SSR, SST, and SSE are the sum of the 

square regression, the sum of the square total, and 

the sum of the square residual, respectively. ,  

and  are the actual value, the predicted value, 

and the mean of the actual value, respectively, for 

n samples of algae species, and k is the number of 

features in a given frequency range (Basak et al., 

2021). 

Using the following equation, the percentile 

deviations (PD) of both the obtained and 

predicted absorbance using the growth rate theory 

for each microalgae species were determined to 

ensure the accuracy of the proposed model 

(Santos-Ballardo et al., 2015). 

 

Percentile deviation =     × 100                                                                       

(13)                                                           

                                                     (14) 

                                               (15) 

 

2.6. Statistical Analysis 

The experiments that were used for all of the 

computations were evaluated in triplicate, and the 

results were shown in Graph Pad Prism 9 as the 

mean ± SD.  

3. Results and Discussions 

3.1 Microalgae maximum absorbance 

To determine and compare the growth patterns 

of microalgae cultures in terms of biomass yield, 

two microalgae cultures were cultivated in batch 

culture for up to 28 days in BBM medium culture 

under room temperature.  

The light absorbance of the various microalgae 

samples was analyzed from 600 to 750 nm 

(Fig1). The highest absorbance was obtained at 

680nm, which corresponded to the wavelength of 

maximum sensitivity for quantifying two 

microalgae samples. Maximum absorbance was 

measured at various cell growth phases and 

exhibited the same pattern in all tests. For 

example, the p-value for Tukey's HSD test (p-

value <0.0001, R
2
: 0.996) was much lower than 

the cutoff for another wavelength of 680 nm. As a 

result, this wavelength was used for all 

subsequent studies. Since pigment absorption is 

more concentrated at specific wavelengths of 

light, choosing a wavelength in the range of 

maximum pigment absorption should provide the 

largest signal (Griffiths et al., 2011). The 

maximum absorption ranges of chlorophyll-a in 

previous experiments on cell growth of some 

species of microalgae have been reported in 

different wavelengths, including 664 to 678 nm 

(Cunha & Grenha, 2016), 680 nm (Cunha & 

Grenha, 2016), and 684 nm (Cunha & Grenha, 

2016).Standard spectrophotometric assessment of 
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microalgae development typically recommends a 

wavelength range of 664 to 690 nm since these 

values coincide with chlorophyll absorption 

(Cunha & Grenha, 2016). Changes in maximal 

absorption of microalgae species can be attributed 

to differences in the content of intracellular 

pigments and chlorophyll ("a" and "b"), such as 

carotenoids (Bricaud et al., 1998). 

The growth rate finding in this study 

supported previous research that found values of 

μ: 0.18–0.36d
−1

 for C. sorokiniana (Cunha & 

Grenha, 2016) and values of μ: 0.192 ± 0.021 d
−1

, 

dt: 3.6 d,  for Chlorella sp. (Hajjar 

Rakhmadumila & Setiani Muntalif, 2020). The 

specific growth rate values μ: 0.25 - 0.27 d
−1 

were 

reported for Chlorella vulgaris (He et al., 2020). 

The variation of growth rates of various algae 

strains depends on growth conditions and algal 

requirements (Santos-Ballardo et al., 2015). It is  

clear that different strains of microalgae have 

distinct cell growth characteristics. This can be 

explained by the fact that a variety of parameters, 

including culture conditions (aeration, light, 

temperature, pH, nutrients) and reactor 

characteristics, affect microalgae cell growth 

(Guedes & Malcata, 2012) 

Chlorella sorokiniana Chlorella sp.
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Figure 1. The scanning of light absorbance patterns for 

various strains of microalgae from 600 to 750 nm. 

 

3.2 Growth performance of microalgae species 

Maximum absorbance was achieved at the end 

of the stationary phase, as determined by 

analyzing cell growth curves (Fig 2). Also, to 

describe the circumstances under which optimal 

maximum growth is typically seen, the 

experimental growth period data based on OD 

were checked, evaluated, and validated for the 

two species of microalgae using non-linear 

mathematical models, such as Gompertz, 

Logistic, Exponential plateau, and Beta growth 

models. Data from microalgal growth 

experiments were fitted to a variety of models, as 

depicted in Figure 2, and all models 

approximately successfully fit the microalgae 

growth curves. 
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Figure 2. Predicted growth curves were obtained from 

Logistic, Gompertz, Exponential Plateau, and Beta Growth 

models of a. Chlorella sorokiniana and b. Chlorella sp. in 

BBM culture medium.  
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The performance indices data of the models 

shown in Table 1 indicated that the models 

provided an acceptable fit to the experimental 

data. Table 1 also shows that all models 

explained over 95% of the variation in 

microalgae optical density, with an R
2
 value of 

more than 0.95.  Moreover, culture time is a 

crucial element of the microalgae development 

profile, and a high adjR
2
 value indicates that no 

overfitting has occurred. The decreased value of 

the root means square error (RMSE) and the 

Akaike information criterion (AIC) (Table 1) 

indicated the best agreement between 

experimental data and the mathematical models.  

 

 

Table 1. Statistical Model Evaluation

 Statistical 

parameter 

Chlorella sorokiniana Chlorella sp. 

Logistic Gompertz Exponential 

plateau 

Beta 

growth 

Logistic Gompertz Exponential 

plateau 

Beta 

growth 

R
2
 0.9826 0.9933 0.9972 0.9972 0.9567 0.9661 0.971 0.959 

R
2
adj 0.9816 0.9929 0.9971 0.9970 0.9542 0.9641 0.969 0.957 

RMSE 0.16 0.099 0.064 0.064 0.26 0.23 0.215 0.25 

SSM
*
 0.98 0.37 0.156 0.157 2.58 2.017 1.72 2.40 

AICc
**

 -134.5 -171.8 -206.1 -205.8 -92.99 -102.4 -108.3 -95.72 

*Sum of Squares, ** Akaike information criterion 

A mathematical evaluation of the goodness-of-

fit or credibility of growth models was necessary 

before using them to estimate the cell counts 

based on optical density, even if all models were 

an excellent match for the experimental data. 

However, the high determination coefficients (R
2
 

> 0.99 and R
2
>0.97 for Chlorella sorokiniana and 

Chlorella sp., respectively) and high accuracy 

(RMSE; 6% and 21% for Chlorella sorokiniana 

and Chlorella sp., respectively) showed that the 

experimental results were a good fit for the 

exponential plateau model. This is enough to 

explain the growth of the two microalgal strains 

in BBM medium.  

In agreement with the use of mathematical 

models for microalgae growth monitoring, 

Lacerda et al. calculated and predicted the 

parameters of the Aphanothece microscopica 

Nägeli (RSMan92) cell growth using Logistic, 

Morgan, Gompertz, and modified Gompertz, and 

Baranyi growth models (2011). Also, Mansouri et 

al. analyzed and forecasted the biomass 

production of Chlorella Vulgaris using the 

equations of six mathematical growth models 

(Logistic, Gompertz, modified Gompertz, 

Morgan, Richards, and Baranyi), and reported 

well-fitting models (2016). The Logistic and 

Gompertz mathematical models were used by 

Ajala and Alexander to fit and validate the 

growth period experimental data for Scenedesmus 

obliquus, Chlorella vulgaris, and Oocystis minuta 

(2020). They discovered that the Gompertz model 

fits the microalgae growth curves more closely 

than the Logistic model for all growth 

circumstances and microalgae species (Ajala & 

Alexander, 2020). 

The maximum density and absorbance 

parameters for growth rate and cell growth 

performance are shown in Table 2. Previous 

studies on C. sorokiniana and Chlorella sp. 

showed values of μ: 0.18–0.36d
−1

 (Rosenberg et 

al., 2014; Badar et al., 2017; Asadi et al., 2019) 

and values of μ: 0.192 ± 0.021 d
−1

, dt: 3.6 d, 

respectively (Hajjar Rakhmadumila & Setiani 
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Muntalif, 2020) which we confirm with our 

results. The specific growth rate values μ: 0.25 - 

0.27 d
−1 

were reported for Chlorella vulgaris (He 

et al., 2020). The variation of growth rates of 

various algae strains depends on growth 

conditions and algal requirements (Santos-

Ballardo et al., 2015). It is clear that different 

strains of microalgae have distinct cell growth 

characteristics, which can be explained by the 

fact that a variety of parameters, including culture 

conditions (aeration, light, temperature, pH, 

nutrients) and reactor characteristics, affect 

microalgae cell growth (Guedes & Malcata, 

2012).  Our results show that the specific growth 

rate in the Exponential plateau model is closer to 

the specific growth rate (µ) obtained from the 

experimental data (Table 2 and Fig 2). The data 

in Table 2 supports these findings. An accurate 

growth rate prediction model was developed 

using data from this study. 

 

Table 2. Growth Performance of Microalgae Species 

 
Maximum 

(Cells mL−1) 

Maximum 

absorbance 

Maximum 

DW (g L-

1) 

dt (d) 
μ (d−1) 

experimental 

μ (d−1) 

Gompertz 

μ (d−1) 

Logistic 

μ (d−1) 

Exponential 

plateau 

μ (d−1) 

Beta 

Growth 

Chlorella 

sorokinian

a 

2.64±3.02×107 1.54±0.13 1.18±0.02 4.33±0.01 0.16 0.099 0.08 0.18 0.096 

Chlorella 

sp. 
2.63±3.08×107 1.72±0.13 1.24±0.22 4.95±0.03 0.14 0.089 0.079 0.14 0.096 

 

3.3. Predictive models 

(Fig 3, 4, and 5) show the correlation between 

the optical-cell density, optical density-dry 

weight, and cell density-the dry weight of the 

tested microalgae species in this study. In these 

figures, the calculated predictive values are 

represented by lines. 
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Figure 3. Relationship between absorbance at 680 nm and cell counting (cells mL
-1

) for a. Chlorella sorokiniana and 

b.Chlorella sp. Black dots represent the experimentally observed values, and lines represent the theoretical values calculated 

using the developed predictive models.  
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Figure 4. Relationship between absorbance at 680 nm and dry weight (g L

-1
) for a. Chlorella sorokiniana and b. Chlorella 

sp. Black dots represent the experimentally observed values and lines represent the theoretical values calculated using the 

developed predictive models. 
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Figure 5. Relationship between counting (cells mL

-1
) and dry weight (g L

-1
) for a. Chlorella sorokiniana and b.Chlorella sp. 

Black dots represent the experimentally observed values and lines represent the theoretical values calculated using the 

developed predictive models. 

 

 

Cell counts (cells mL
−1

) and dry weight (g L
-1

) 

were determined as functions of absorbance using 

predictive models developed by solving the 

previous equations at the appropriate absorbance 

values at 680nm for each microalgae species: 

                                                   (16) 

                                    (17) 

Also, the predictive models, at the correspondent 

cell count (cells mL
−1

) for each microalgae 

species, calculated dry weight (g L
-1

) as a 

function of cell counting as follows: 

a b 
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          (18) 

The regression coefficients of the absorbance and 

cell number (cells mL
−1

) forecasting models are 

shown in Table 3. With a large coefficient of 

variance (0.991 and 0.986 for C. sorokiniana and 

Chlorella sp.), the absorbance of the microalgae 

suspensions explains more than 90% of the 

correlation with the cell density (cells mL
−1

).  

The validation of two microalgae strains' biomass 

production models demonstrates a high level of 

statistical accuracy with an RMSE of 

approximately 6% for both strains and a 

regression coefficient between the actual and 

predicted values (slope) of 0.988 and 0.991 for C. 

sorokiniana and Chlorella sp., respectively 

(Table 3). In addition, as shown in Table 3, the 

regression coefficients for C. sorokiniana and 

Chlorella sp. varied from 0.9966 to 0.9804, 

indicating that measured dry weight (g L
−1

) has a 

significant correlation with cell density (cells 

mL
−1

). The RMSE of 2% confirmed the high 

accuracy of the predictive model. 

Also, by estimating dry weight based on cell 

concentration, the predictive model was validated 

and shown to be highly accurate (RMSE 3-7%); it 

also explained more than 95% of the variance 

(regression coefficients 0.9929 and 0.9726 for C. 

sorokiniana and Chlorella sp., respectively).  

 

 

 

  
 

Table 3. Regression coefficients of the predictive models for A. abs and cell counting (cells mL
−1

), B. abs and dry weight (g 

mL
−1

), and C. cell counting (cells mL
−1

) and dry weight (g mL
−1

). 

β0, β1, and β2 are regression coefficients for Eqs. (3) and (5). RMSE is the root of the mean square error. R 
2 

adj is the 

adjusted determination coefficient.  Regression coefficients of the predictive models for A. abs and cell counting (cells 

mL
−1

), B. abs and dry weight (g mL
−1

), and C. cell counting (cells mL
−1

) and dry weight (g mL
−1

). 

Regression 

coefficients 

Chlorella sorokiniana Chlorella sp. 

 A B C A B C 

β0 0.009 -0.086 -0.031 0.0137 -0.025 -0.008 

β1 0.085 1.25 0.11 0.066 0.885 0.063 

β2 -0.0008 -0.30 -0.002 -0.0003 -0.114 -0.0007 

RMSE 0.064 0.026 0.038 0.061 0.066 0.074 

R
2
 0.9886 0.9966 0.9929 0.9918 0.9804 0.9766 

R
2 
adj 0.9860 0.9952 0.9901 0.9901 0.9726 0.9673 

AICc -53.05 -37.69 -31.83 -60.50 -22.99 -21.23 

 

As illustrated in (Fig 6), the percentile deviation 

([observed-expected]/observed.100) was less than 

5(%) for C. sorokiniana, ranging from 3.46×10
6
 

to 2.49× 10
7 

cells mL
-1

, and roughly 0.39×10
6
 to 

2.47×10
7
 cells mL

-1
 for Chlorella sp. The 

predicted values for C. sorokiniana showed 

greater deviations from the experimental values at 

low cell density. Therefore, estimation of cell 

counting (cells mL
-1

) by absorbance at a specific 

wavelength can be accurately performed within 

these cell density ranges for each microalgal 

species. According to equation (16), it can be 

seen that absorption in high concentrations is 

proportional to cell concentration. Due to the size 
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difference of microalgae cells, it is reasonable to 

assume that at high cell concentrations, the 

absorbing cells prevent some subsequent cells 

from interacting along the pathway (Thatipamala 

& Hill, 1991). As a result, estimates of cell 

concentration will be inaccurate due to light 

absorption at high concentrations. These findings 

corroborate the findings of a study conducted by 

Su et al. (2016), who used a 660 nm wavelength 

to analyze the cellular proliferation of two 

microalgal species (C. vulgaris and Phormidium 

sp.). Furthermore, Jia et al. developed a sensor for 

precise microalgae biomass concentration 

monitoring using OD measurements at 650, 685, 

and 780 nm; the growth rates calculated at each 

wavelength were deemed to be good indicators 

for tracking microalgae growth transitions and 

picking up on disturbances in the culture system 

(2015). In agreement with the estimation of cell 

density from absorbance data, Rodrigues et al. 

used a power function to produce an equation 

using absorbance data for precisely estimating 

Pseudokirchneriella subcapitataof up to 5×10
6
 

cells mL
-1 

(Rodrigues et al., 2011). Also, Santos-

Ballardo et al. established a correlation between 

spectrophotometric absorbance and cell counting 

(cells mL
−1

) of Isochrysis affinis galbana (T-Iso), 

Chaetoceros calcitrans, Nannochloropsis 

gaditana, and Phaeodactylum tricornutum and 

presented equations with a confidence interval of 

95% for microalgae densities of up to 10
7
(cells 

mL
−1

) (2015). In this regard, Gomez et al. devised 

a straightforward method for measuring cell 

density using spectrophotometric absorbance in 

both batch culture and batch feeding of Isochrysis 

galbana during the exponential growth phase   

(2015).  

 

 

 

Figure 6. Percentile deviation [(observed−predicted) × 100 / observed] of the proposed model for the absorbance at 680 nm 

as of cell density (cells mL
−1

) of a. Chlorella sorokiniana and b. Chlorella sp. 

 

The percentile deviation (PD) of the fitted model 

for dry weight and absorption at 680 nm for each 

microalga is shown in (Fig 7). For dry weights up 

to 1.18 and 1.25 g L
-1

 with a random distribution 

pattern for Chlorella sorokiniana and Chlorella 

sp., the percentile deviation is less than 10%. The 

adjusted model for Chlorella sorokiniana is 

significantly biased if it is less than 0.02 g L
-1

. To 

calculate the dry weight of microalgae using 

optical density, the optical characteristics of cells 

must be considered because they are affected by 

their pigment content due to growth conditions 

and culture age, altering the relationship between 

absorbance and dry weight (Griffiths et al., 2011). 

Another source of inaccuracy could be the risk of 

bacterial contamination while determining the dry 

a 
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weight of microalgae. Griffiths et al. (2011) 

found that using a standard curve constructed at a 

single time point in the development cycle to 

compute dry weight from optical density resulted 

in an average relative error across the growth 

cycle, relative to actual dry weight, ranging from 

9 to 18 percent at 680 nm, which is consistent 

with the finding of this study. Also, Cordova et 

al. correlated the dry weight concentration of C. 

sorokiniana to the optical density at 600 nm 

(2018). Ajala and Alexander found a link 

between dry weight and correlation coefficients 

(R
2
) of 0.986, 0.999, and 0.959 for S. obliquus, C. 

vulgaris, and O. minuta, respectively, with the 

optical density, OD580 (2020). According to 

Hotos et al., the most reliable wavelengths for 

estimating dry weight in Nephroselmis, 

Amphidinium, and Phormidium were 680 nm and  

570 nm, respectively (2020). 

 

 

 

Figure 7. Percentile deviation [(observed−predicted) × 100 / observed] of the proposed model for the absorbance at 680 nm 

as of dry weight (g L
-1

) of a. Chlorella sorokiniana and b. Chlorella sp. 

 

To improve the accuracy and utility of the 

prediction equations provided in this study, the 

percentile deviation of cell density (cells mL
-1

) 

and dry weight (g L
-1

) of two microalgae strains 

with the least standard error and deviation were 

investigated. The percentile deviation between 

the predicted and observed cell density and dry 

weight is depicted in (Fig 8). As can be seen, the 

percentile deviation decreased by 7% between 

0.006 and 1.18 g L
-1

 for C. sorokiniana, and by 

10% between 0.13 and 1.24 g L
-1

 for Chlorella 

sp. Therefore, within these cell density ranges, it 

is possible to accurately estimate dry weight for 

the studied microalgae strains. Cell density 

changes as the cell water content changes. The 

ratio of biopolymers, such as carbohydrates, to 

the small monomers that make them up, 

determines the cytoplasmic osmolality. 

Biopolymer cleavage raises cellular ion content 

and hydration. Cellular hydration affects biomass 

dry weight more than wet density because 

hydrated biopolymers have a density similar to 

water (Chioccioli et al., 2014). The amount of 

cellular mucilage explains the inaccuracy when 

dry weight is determined using cell numbers. The 

amount of cellular mucilage present at different 

stages of growth affects the dry weight value of 

microalgae (Mahlmann et al., 2008). As a result, 

this inaccuracy may impact the estimation of cell 

dry weight by cell number. 



M.Safari and S. Mirdamadi. e.t al. / Microbiology, Metabolites and Biotechnology 5 (2022) 42-55 

The created models performed very well overall, 

covering a wide range of microalgae kinetics with 

only a small percentile deviation. This means that 

absorbance data measured at the appropriate 

wavelength can be used to accurately calculate 

the cell count (cells mL
-1

) and dry weight of 

Chlorella sorokiniana and Chlorella sp. 

 

 

 

Figure 8. Percentile deviation [(observed−predicted) × 100 / observed] of the proposed model for the cell density as of dry 

weight (g L
-1

) of a. Chlorella sorokiniana and b. Chlorella sp. 

 

4. Conclusion: 

Two marine microalgae species isolated from 

the Persian Gulf and Qeshm Island C. 

sorokiniana and Chlorella sp. were cultivated in 

BBM to determine optical density at multiple 

wavelengths (600, 640, 680, and 750 nm). The 

optimal wavelength for maximal absorbance was 

established for both microalgae strains. The 

growth modelling of C. sorokiniana and 

Chlorella sp. was investigated using four 

mathematical growth models (Logistic, 

Gompertz, Exponential plateau, and Beta 

growth). A high degree of agreement was found 

between the mathematic growth model and the 

experimental OD measurements. The 

spectrophotometric method,  a simple and useful 

tool, was developed for the estimation of cell 

counting and dry weight. However, cell density 

estimation using the spectrophotometric method 

was found to be specific to each strain of algae 

and cannot be attributed to all types of algae, with 

regard to the morphology of the species and cell 

volume values.  To this end, we confirmed the 

feasibility of estimating cell density by cell 

number and dry weight using the 

spectrophotometric method by calibrating a 

predictable and satisfactory model for a wide 

range of cell densities for Chlorella sp.and C. 

sorokiniana.  
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